On the Existence and Stability of an Infinite-Dimensional Invariant Torus
Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 508-528
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an annular set of the form $K=B\times \mathbb{T}^{\infty}$, where $B$ is a closed ball of the Banach space $E$, $\mathbb{T}^{\infty}$ is the infinite-dimensional torus (the direct product of a countable number of circles with the topology of coordinatewise uniform convergence). For a certain class of smooth maps $\Pi\colon K\to K$, we establish sufficient conditions for the existence and stability of an invariant toroidal manifold of the form $$ A=\{(v, \varphi)\in K: v=h(\varphi)\in E,\,\varphi\in\mathbb{T}^{\infty}\}, $$ where $h(\varphi)$ is a continuous function of the argument $\varphi\in\mathbb{T}^{\infty}$. We also study the question of the $C^m$-smoothness of this manifold for any natural $m$.
Keywords:
mapping, infinite-dimensional invariant torus, stability, smoothness.
Mots-clés : annulus principle
Mots-clés : annulus principle
@article{MZM_2021_109_4_a2,
author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
title = {On the {Existence} and {Stability} of an {Infinite-Dimensional} {Invariant} {Torus}},
journal = {Matemati\v{c}eskie zametki},
pages = {508--528},
publisher = {mathdoc},
volume = {109},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a2/}
}
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - On the Existence and Stability of an Infinite-Dimensional Invariant Torus JO - Matematičeskie zametki PY - 2021 SP - 508 EP - 528 VL - 109 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a2/ LA - ru ID - MZM_2021_109_4_a2 ER -
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. On the Existence and Stability of an Infinite-Dimensional Invariant Torus. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 508-528. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a2/