Schwarz's Lemma and Estimates of Coefficients in the Case of an Arbitrary Set of Boundary Fixed Points
Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 636-640.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: holomorphic map, fixed points, angular derivative, Schwarz's lemma
Mots-clés : domains of coefficients.
@article{MZM_2021_109_4_a15,
     author = {O. S. Kudryavtseva},
     title = {Schwarz's {Lemma} and {Estimates} of {Coefficients} in the {Case} of an {Arbitrary} {Set} of {Boundary} {Fixed} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {636--640},
     publisher = {mathdoc},
     volume = {109},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a15/}
}
TY  - JOUR
AU  - O. S. Kudryavtseva
TI  - Schwarz's Lemma and Estimates of Coefficients in the Case of an Arbitrary Set of Boundary Fixed Points
JO  - Matematičeskie zametki
PY  - 2021
SP  - 636
EP  - 640
VL  - 109
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a15/
LA  - ru
ID  - MZM_2021_109_4_a15
ER  - 
%0 Journal Article
%A O. S. Kudryavtseva
%T Schwarz's Lemma and Estimates of Coefficients in the Case of an Arbitrary Set of Boundary Fixed Points
%J Matematičeskie zametki
%D 2021
%P 636-640
%V 109
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a15/
%G ru
%F MZM_2021_109_4_a15
O. S. Kudryavtseva. Schwarz's Lemma and Estimates of Coefficients in the Case of an Arbitrary Set of Boundary Fixed Points. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 636-640. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a15/

[1] L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Book Co., New York, 1973 | MR | Zbl

[2] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[3] F. G. Avkhadiev, K.-J. Wirths, Schwarz–Pick Type Inequalities, Birkhäuser Verlag, Basel, 2009 | MR | Zbl

[4] V. V. Goryainov, Matem. sb., 208:3 (2017), 54–71 | DOI | MR | Zbl

[5] O. S. Kudryavtseva, A. P. Solodov, Matem. sb., 210:7 (2019), 120–144 | DOI | Zbl

[6] A. P. Solodov, Matem. zametki, 108:4 (2020), 638–640 | DOI | Zbl

[7] A. P. Solodov, “Tochnaya oblast odnolistnosti na klasse golomorfnykh otobrazhenii kruga v sebya s vnutrennei i granichnoi neodvizhnymi tochkami”, Izv. RAN. Ser. matem., 2021 (to appear) | Zbl

[8] S. G. Krantz, Complex Var. Ellip. Equ., 56:5 (2011), 455–468 | DOI | MR | Zbl

[9] M. Elin, F. Jacobzon, M. Levenshtein, D. Shoikhet, Harmonic and Complex Analysis and its Applications, Springer, Cham, 2014, 135–230 | MR | Zbl

[10] V. N. Dubinin, Matem. sb., 196:11 (2005), 53–74 | DOI | MR | Zbl

[11] S. Yu. Graf, Izv. vuzov. Matem., 2014, no. 11, 87–92 | Zbl

[12] V. G. Gordienko, D. V. Prokhorov, Matem. zametki, 105:3 (2019), 364–374 | DOI | Zbl

[13] C. C. Cowen, Ch. Pommerenke, J. London Math. Soc., 26:2 (1982), 271–289 | DOI | Zbl

[14] J. M. Anderson, A. Vasil'ev, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 101–110 | Zbl

[15] V. N. Dubinin, Analiticheskaya teoriya chisel i teoriya funktsii. 18, Zap. nauchn. sem. POMI, 286, POMI, SPb., 2002, 74–84 | MR | Zbl

[16] P. Gumenyuk, D. Prokhorov, Ann. Acad. Sci. Fenn. Math., 43:1 (2018), 451–462 | DOI | MR | Zbl

[17] O. S. Kudryavtseva, A. P. Solodov, Matem. sb., 211:11 (2020), 96–117 | DOI | Zbl

[18] O. S. Kudryavtseva, “Neravenstvo tipa Shvartsa dlya golomorfnykh otobrazhenii kruga v sebya s nepodvizhnymi tochkami”, Izv. vuzov. Matem., 2021 (to appear)