Reconstruction of a Generalized Fourier Series from Its Sum on a Compact Zero-Dimensional Group in the Non-Abelian Case
Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 616-624
Voir la notice de l'article provenant de la source Math-Net.Ru
A necessary and sufficient condition for a formal series with respect to the system of irreducible representations of a compact zero-dimensional group to be the Fourier–Stieltjes series of an additive measure is found. It is shown that, in the case of pointwise convergence of such a series everywhere on the group, its sum is integrable in the sense of Henstock-type integral, and the given series is the Fourier–Henstock series of its sum.
Keywords:
zero-dimensional compact groups, irreducible unitary representations of a group, additive complex measure, Fourier–Stieltjes operator coefficients, Henstock–Kurzweil integral on a group.
@article{MZM_2021_109_4_a12,
author = {V. A. Skvortsov},
title = {Reconstruction of a {Generalized} {Fourier} {Series} from {Its} {Sum} on a {Compact} {Zero-Dimensional} {Group} in the {Non-Abelian} {Case}},
journal = {Matemati\v{c}eskie zametki},
pages = {616--624},
publisher = {mathdoc},
volume = {109},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a12/}
}
TY - JOUR AU - V. A. Skvortsov TI - Reconstruction of a Generalized Fourier Series from Its Sum on a Compact Zero-Dimensional Group in the Non-Abelian Case JO - Matematičeskie zametki PY - 2021 SP - 616 EP - 624 VL - 109 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a12/ LA - ru ID - MZM_2021_109_4_a12 ER -
%0 Journal Article %A V. A. Skvortsov %T Reconstruction of a Generalized Fourier Series from Its Sum on a Compact Zero-Dimensional Group in the Non-Abelian Case %J Matematičeskie zametki %D 2021 %P 616-624 %V 109 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a12/ %G ru %F MZM_2021_109_4_a12
V. A. Skvortsov. Reconstruction of a Generalized Fourier Series from Its Sum on a Compact Zero-Dimensional Group in the Non-Abelian Case. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 616-624. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a12/