Mots-clés : perturbation, convexification, local infimum.
@article{MZM_2021_109_4_a0,
author = {E. R. Avakov and G. G. Magaril-Il'yaev},
title = {Implicit {Function.} {Controllability} and {Perturbation} of {Optimal} {Control} {Problems}},
journal = {Matemati\v{c}eskie zametki},
pages = {483--499},
year = {2021},
volume = {109},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a0/}
}
TY - JOUR AU - E. R. Avakov AU - G. G. Magaril-Il'yaev TI - Implicit Function. Controllability and Perturbation of Optimal Control Problems JO - Matematičeskie zametki PY - 2021 SP - 483 EP - 499 VL - 109 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a0/ LA - ru ID - MZM_2021_109_4_a0 ER -
E. R. Avakov; G. G. Magaril-Il'yaev. Implicit Function. Controllability and Perturbation of Optimal Control Problems. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 483-499. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a0/
[1] R. V. Gamkrelidze, Osnovy optimalnogo upravleniya, URSS, M., 2019 | MR
[2] E. R. Avakov, G. G. Magaril-Ilyaev, “Teorema o neyavnoi funktsii dlya vklyuchenii, zadavaemykh blizkimi otobrazheniyami”, Matem. zametki, 103:4 (2018), 483–489 | DOI | Zbl
[3] E. R. Avakov, G. G. Magaril-Ilyaev, “Lokalnyi infimum i semeistvo printsipov maksimuma v optimalnom upravlenii”, Matem. sb., 211:6 (2020), 3–39 | DOI | Zbl
[4] V. A. Zorich, Matematicheskii analiz, Ch. 2, Nauka, M, 1984 | MR | Zbl
[5] E. B. Li, L. Markus, Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972 | MR
[6] E. R. Avakov, G. G. Magaril-Ilyaev, “Upravlyaemost i neobkhodimye usloviya optimalnosti vtorogo poryadka”, Matem. sb., 210:1 (2019), 3–26 | DOI | Zbl
[7] A. F. Filippov, “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1959, no. 2, 25–32 | MR | Zbl
[8] E. R. Avakov, G. G. Magaril-Ilyaev, “Ovypuklenie po Gamkrelidze i teorema Bogolyubova”, Matem. zametki, 107:4 (2020), 483–497 | DOI | Zbl