Existence Conditions for Extremal Probability Measures on Polish Spaces and Some of Their Properties
Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 470-474.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Polish space, dual space, weakened topology, set of equivalent probability measures, relative compactness, absolute continuity and singularity of probability measures.
@article{MZM_2021_109_3_a12,
     author = {A. A. Nesterenko and V. M. Khametov and E. A. Shelemekh},
     title = {Existence {Conditions} for {Extremal} {Probability} {Measures} on {Polish} {Spaces} and {Some} of {Their} {Properties}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {470--474},
     publisher = {mathdoc},
     volume = {109},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a12/}
}
TY  - JOUR
AU  - A. A. Nesterenko
AU  - V. M. Khametov
AU  - E. A. Shelemekh
TI  - Existence Conditions for Extremal Probability Measures on Polish Spaces and Some of Their Properties
JO  - Matematičeskie zametki
PY  - 2021
SP  - 470
EP  - 474
VL  - 109
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a12/
LA  - ru
ID  - MZM_2021_109_3_a12
ER  - 
%0 Journal Article
%A A. A. Nesterenko
%A V. M. Khametov
%A E. A. Shelemekh
%T Existence Conditions for Extremal Probability Measures on Polish Spaces and Some of Their Properties
%J Matematičeskie zametki
%D 2021
%P 470-474
%V 109
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a12/
%G ru
%F MZM_2021_109_3_a12
A. A. Nesterenko; V. M. Khametov; E. A. Shelemekh. Existence Conditions for Extremal Probability Measures on Polish Spaces and Some of Their Properties. Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 470-474. http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a12/

[1] P. A. Meier, Veroyatnost i potentsialy, Mir, M., 1973 | MR | Zbl

[2] A. N. Shiryaev, Osnovy stokhasticheskoi finansovoi matematiki, T. 1–2, Fazis, M., 1998

[3] G. Felmer, A. Shid, Vvedenie v stokhasticheskie finansy. Diskretnoe vremya, MTsNMO, M., 2008

[4] F. Riedel, Econometrica, 77:3 (2009), 857–908 | DOI | MR

[5] R. Elliott, Stokhasticheskii analiz i ego prilozheniya, Mir, M., 1986 | MR

[6] A. B. Piunovskii, Optimalnoe upravlenie sluchainymi posledovatelnostyami v zadachakh s ogranicheniyami, RFFI, M., 1996

[7] E. B. Dynkin, A. A. Yushkevich, Upravlyaemye markovskie protsessy i ikh prilozheniya, Nauka, M., 1975 | MR

[8] N. N. Vorobev, Teoriya igr. Lektsii dlya ekonomistov-kibernetikov, Nauka, M., 1974 | MR

[9] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 1. Obschaya teoriya, IL, M., 1962 | MR | Zbl

[10] R. Felps, Lektsii o teoremakh Shoke, Mir, M., 1968 | MR | Zbl

[11] K. Floret, Weakly Compact Sets, Lecture Notes in Math., 801, Springer-Verlag, Berlin, 1980 | DOI | MR

[12] S. Biagini, M. Frittelly, Ann. Appl. Probab., 18:3 (2008), 929–966 | DOI | MR

[13] G. A. Vasilev, V. M. Khametov, E. A. Shelemekh, Matem. zametki, 94:6 (2013), 944–948 | DOI | MR | Zbl

[14] V. M. Khametov, E. A. Shelemekh, Avtomat. i telemekh., 2016, no. 6, 121–144

[15] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[16] V. I. Bogachev, Osnovy teorii mery, T. 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2003

[17] Zh. Neve, Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR

[18] V. I. Bogachev, O. G. Smolyanov, V. I. Sobolev, Topologicheskie vektornye prostranstva i ikh prilozheniya, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2012

[19] V. I. Bogachev, O. G. Smolyanov, Deistvitelnyi i funktsionalnyi analiz: universitetskii kurs, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2009

[20] V. I. Bogachev, Osnovy teorii mery, T. 1, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2003