Local Discrepancies in the Problem of the Distribution of the Sequence~$\{k\alpha\}$
Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 452-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with local discrepancies in the problem of the distribution of the sequence $\{k\alpha\}$, i.e., the remainder terms in asymptotic formulas for the number of points in this sequence lying in prescribed intervals. The construction of intervals for which local discrepancies tend to infinity slower than any given function is presented. Moreover, it is shown that there exists an uncountable set of such intervals. Previously, similar results were obtained only for irrationalities with bounded partial quotients of their continued fraction expansions.
Keywords: uniform distribution, local discrepancies, inhomogeneous Diophantine approximations, continued fractions.
@article{MZM_2021_109_3_a10,
     author = {A. V. Shutov},
     title = {Local {Discrepancies} in the {Problem} of the {Distribution} of the {Sequence~}$\{k\alpha\}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {452--463},
     publisher = {mathdoc},
     volume = {109},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a10/}
}
TY  - JOUR
AU  - A. V. Shutov
TI  - Local Discrepancies in the Problem of the Distribution of the Sequence~$\{k\alpha\}$
JO  - Matematičeskie zametki
PY  - 2021
SP  - 452
EP  - 463
VL  - 109
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a10/
LA  - ru
ID  - MZM_2021_109_3_a10
ER  - 
%0 Journal Article
%A A. V. Shutov
%T Local Discrepancies in the Problem of the Distribution of the Sequence~$\{k\alpha\}$
%J Matematičeskie zametki
%D 2021
%P 452-463
%V 109
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a10/
%G ru
%F MZM_2021_109_3_a10
A. V. Shutov. Local Discrepancies in the Problem of the Distribution of the Sequence~$\{k\alpha\}$. Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 452-463. http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a10/

[1] P. Bohl, “Über ein in der Theorie der säkutaren Störungen vorkommendes Problem”, J. Reine Angew. Math., 135 (1909), 189–283 | DOI | MR

[2] W. Sierpinski, “Sur la valeur asymptotique d'une certaine somme”, Bull. Intl. Acad. Polonmaise des Sci. et des Lettres (Cracovie). Ser. A, 1910, 9–11

[3] H. Weyl, “Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene”, Rend. Circ. Math. Palermo, 30 (1910), 377–407 | DOI

[4] M. Drmota, R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math., 1651, Springer-Verlag, Berlin, 1997 | DOI | MR

[5] C. G. Pinner, “On Sums of Fractional Parts $\{n\alpha+\gamma\}$”, J. Number Theory, 65:1 (1997), 48–73 | DOI | MR

[6] L. Keipers, G. Niderreiter, Ravnomernoe raspredelenie posledovatelnostei, Mir, M., 1985 | MR | Zbl

[7] E. Hecke, “Über Analytische Funktionen und die Verteilung van Zahlen mod Eins”, Abh. Math. Sem. Univ. Hamburg, 5 (1921), 54–76 | MR

[8] H. Kesten, “On a conjecture of Erdös and Szüsz related to uniform distribution mod 1”, Acta Arith., 12:2 (1966), 193–212 | DOI | MR

[9] A. V. Shutov, “Optimalnye otsenki v probleme raspredeleniya drobnykh dolei na mnozhestvakh ogranichennogo ostatka”, Vestn. SamGU. Estestvennonauchnaya ser., 2007, no. 7 (57), 168-175

[10] V. V. Krasilschikov, A. V. Shutov, “Opisanie i tochnye znacheniya maksimuma i minimuma ostatochnogo chlena problemy raspredeleniya drobnykh dolei”, Matem. zametki, 89:1 (2011), 43–52 | DOI | MR

[11] V. T. Sós, “On strong irregularities of the distribution of $\{n\alpha\}$ sequences”, Studies in Pure Mathematics, Birkhäuser, Basel, 1983, 685–700 | MR

[12] B. Adamczewski, “Repartition des suites $(n\alpha)_{n\in\mathbb{N}}$ et substitutions”, Acta Arith., 112:1 (2004), 1–22 | DOI | MR

[13] L. Roçadas, J. Schoißengeier, “On the local discrepancy of $(n\alpha)$-sequences”, J. Number Theory, 131:8 (2011), 1492–1497 | DOI | MR

[14] J. Beck, “Randomness of the square root of 2 and the Giant Leap. Part 1”, Period. Math. Hungar., 60:2 (2010), 137–242 | DOI | MR

[15] J. Beck, “Randomness of the square root of 2 and the Giant Leap. Part 2”, Period. Math. Hungar., 62:2 (2011), 127–246 | DOI | MR

[16] A. V. Shutov, “Lokalnye otkloneniya v probleme raspredeleniya drobnykh dolei lineinoi funktsii”, Izv. vuzov. Matem., 2017, no. 2, 88–97

[17] W. Schmidt, “Irregularities of distribution. VII”, Acta Arith., 21:1 (1972), 45–50 | DOI | MR

[18] A. V. Shutov, “Neodnorodnye diofantovy priblizheniya i raspredelenie drobnykh dolei”, Fundament. i prikl. matem., 16:6 (2010), 189–202 | MR

[19] S. Fukasawa, “Über die Grössenordnung des absoluten Betrages von einer linearen inhomogenen Form. I”, Japanese Journal of Mathematics, 3 (1926), 1–26 | Zbl

[20] H. Davenport, “On a theorem of Khintchine”, Proc. London Math. Soc. (2), 52:1 (1950), 65–80 | DOI | MR

[21] J. W. S. Cassels, “Über $\liminf_{x\to\infty} x|\theta x+\alpha-y|$”, Math. Ann., 127:1 (1954), 288–304 | DOI | MR

[22] T. W. Cusick, A. M. Rockett, P. Szüsz, “On inhomogeneous Diophantine approximation”, J. Number Theory, 48:3 (1994), 259–283 | DOI | MR

[23] C. G. Pinner, “More on inhomogeneous diophantine approximation”, J. Théor. Nombres Bordeaux, 13:2 (2001), 539–557 | MR

[24] T. Komatsu, “On inhomogeneous continued fraction expansions and inhomogeneous diophantine approximation”, J. Number Theory, 62:1 (1997), 192–212 | DOI | MR

[25] D. Hensley, Continued Fractions, World Sci. Publ., Hackensack, NJ, 2006 | MR

[26] C. D. Olds, Continued Fractions, Random House, New York, 1963 | MR