Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_3_a10, author = {A. V. Shutov}, title = {Local {Discrepancies} in the {Problem} of the {Distribution} of the {Sequence~}$\{k\alpha\}$}, journal = {Matemati\v{c}eskie zametki}, pages = {452--463}, publisher = {mathdoc}, volume = {109}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a10/} }
A. V. Shutov. Local Discrepancies in the Problem of the Distribution of the Sequence~$\{k\alpha\}$. Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 452-463. http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a10/
[1] P. Bohl, “Über ein in der Theorie der säkutaren Störungen vorkommendes Problem”, J. Reine Angew. Math., 135 (1909), 189–283 | DOI | MR
[2] W. Sierpinski, “Sur la valeur asymptotique d'une certaine somme”, Bull. Intl. Acad. Polonmaise des Sci. et des Lettres (Cracovie). Ser. A, 1910, 9–11
[3] H. Weyl, “Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene”, Rend. Circ. Math. Palermo, 30 (1910), 377–407 | DOI
[4] M. Drmota, R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math., 1651, Springer-Verlag, Berlin, 1997 | DOI | MR
[5] C. G. Pinner, “On Sums of Fractional Parts $\{n\alpha+\gamma\}$”, J. Number Theory, 65:1 (1997), 48–73 | DOI | MR
[6] L. Keipers, G. Niderreiter, Ravnomernoe raspredelenie posledovatelnostei, Mir, M., 1985 | MR | Zbl
[7] E. Hecke, “Über Analytische Funktionen und die Verteilung van Zahlen mod Eins”, Abh. Math. Sem. Univ. Hamburg, 5 (1921), 54–76 | MR
[8] H. Kesten, “On a conjecture of Erdös and Szüsz related to uniform distribution mod 1”, Acta Arith., 12:2 (1966), 193–212 | DOI | MR
[9] A. V. Shutov, “Optimalnye otsenki v probleme raspredeleniya drobnykh dolei na mnozhestvakh ogranichennogo ostatka”, Vestn. SamGU. Estestvennonauchnaya ser., 2007, no. 7 (57), 168-175
[10] V. V. Krasilschikov, A. V. Shutov, “Opisanie i tochnye znacheniya maksimuma i minimuma ostatochnogo chlena problemy raspredeleniya drobnykh dolei”, Matem. zametki, 89:1 (2011), 43–52 | DOI | MR
[11] V. T. Sós, “On strong irregularities of the distribution of $\{n\alpha\}$ sequences”, Studies in Pure Mathematics, Birkhäuser, Basel, 1983, 685–700 | MR
[12] B. Adamczewski, “Repartition des suites $(n\alpha)_{n\in\mathbb{N}}$ et substitutions”, Acta Arith., 112:1 (2004), 1–22 | DOI | MR
[13] L. Roçadas, J. Schoißengeier, “On the local discrepancy of $(n\alpha)$-sequences”, J. Number Theory, 131:8 (2011), 1492–1497 | DOI | MR
[14] J. Beck, “Randomness of the square root of 2 and the Giant Leap. Part 1”, Period. Math. Hungar., 60:2 (2010), 137–242 | DOI | MR
[15] J. Beck, “Randomness of the square root of 2 and the Giant Leap. Part 2”, Period. Math. Hungar., 62:2 (2011), 127–246 | DOI | MR
[16] A. V. Shutov, “Lokalnye otkloneniya v probleme raspredeleniya drobnykh dolei lineinoi funktsii”, Izv. vuzov. Matem., 2017, no. 2, 88–97
[17] W. Schmidt, “Irregularities of distribution. VII”, Acta Arith., 21:1 (1972), 45–50 | DOI | MR
[18] A. V. Shutov, “Neodnorodnye diofantovy priblizheniya i raspredelenie drobnykh dolei”, Fundament. i prikl. matem., 16:6 (2010), 189–202 | MR
[19] S. Fukasawa, “Über die Grössenordnung des absoluten Betrages von einer linearen inhomogenen Form. I”, Japanese Journal of Mathematics, 3 (1926), 1–26 | Zbl
[20] H. Davenport, “On a theorem of Khintchine”, Proc. London Math. Soc. (2), 52:1 (1950), 65–80 | DOI | MR
[21] J. W. S. Cassels, “Über $\liminf_{x\to\infty} x|\theta x+\alpha-y|$”, Math. Ann., 127:1 (1954), 288–304 | DOI | MR
[22] T. W. Cusick, A. M. Rockett, P. Szüsz, “On inhomogeneous Diophantine approximation”, J. Number Theory, 48:3 (1994), 259–283 | DOI | MR
[23] C. G. Pinner, “More on inhomogeneous diophantine approximation”, J. Théor. Nombres Bordeaux, 13:2 (2001), 539–557 | MR
[24] T. Komatsu, “On inhomogeneous continued fraction expansions and inhomogeneous diophantine approximation”, J. Number Theory, 62:1 (1997), 192–212 | DOI | MR
[25] D. Hensley, Continued Fractions, World Sci. Publ., Hackensack, NJ, 2006 | MR
[26] C. D. Olds, Continued Fractions, Random House, New York, 1963 | MR