Asymptotics for the Complexity of Boolean Functions with Small Number of Ones
Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 257-263
Voir la notice de l'article provenant de la source Math-Net.Ru
The class $F_{n,k}$ of Boolean functions
consisting of all functions of $n$
variables
each of which outputs $1$ at exactly $k$
$n$-tuples of values of the variables is
considered.
For small $k$,
for example, for
$k\ln n$,
an asymptotics for the
complexity of implementation of every function in
$F_{n,k}$ by a circuit of functional elements in
an irredundant basis containing
$x\to y$
and
$\overline{x\to y}$
is found.
Keywords:
Boolean function, complexity of a function.
Mots-clés : circuit
Mots-clés : circuit
@article{MZM_2021_109_2_a8,
author = {N. P. Red'kin},
title = {Asymptotics for the {Complexity} of {Boolean} {Functions} with {Small} {Number} of {Ones}},
journal = {Matemati\v{c}eskie zametki},
pages = {257--263},
publisher = {mathdoc},
volume = {109},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a8/}
}
N. P. Red'kin. Asymptotics for the Complexity of Boolean Functions with Small Number of Ones. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 257-263. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a8/