Properties of Two-Dimensional Maxima of Particle Scores in Critical Branching Processes with Immigration and Continuous Time
Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 235-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study two-dimensional maxima of particle scores in critical branching processes with immigration and continuous time. The limit distribution for the maxima of two scores at two instants of time is found. We obtain the limit intensities of upward and downward jumps of maxima of one score and the limit intensities of joint upward and downward jumps for both scores or for at least one score. In the case of independent scores, we calculate the average numbers of joint upward and downward jumps of maxima over the whole time period. The results are illustrated with examples.
Keywords: multivariate distributions, extreme values, copulas, branching processes.
@article{MZM_2021_109_2_a6,
     author = {A. V. Karpenko},
     title = {Properties of {Two-Dimensional} {Maxima} of {Particle} {Scores} in {Critical} {Branching} {Processes} with {Immigration} and {Continuous} {Time}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {235--246},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a6/}
}
TY  - JOUR
AU  - A. V. Karpenko
TI  - Properties of Two-Dimensional Maxima of Particle Scores in Critical Branching Processes with Immigration and Continuous Time
JO  - Matematičeskie zametki
PY  - 2021
SP  - 235
EP  - 246
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a6/
LA  - ru
ID  - MZM_2021_109_2_a6
ER  - 
%0 Journal Article
%A A. V. Karpenko
%T Properties of Two-Dimensional Maxima of Particle Scores in Critical Branching Processes with Immigration and Continuous Time
%J Matematičeskie zametki
%D 2021
%P 235-246
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a6/
%G ru
%F MZM_2021_109_2_a6
A. V. Karpenko. Properties of Two-Dimensional Maxima of Particle Scores in Critical Branching Processes with Immigration and Continuous Time. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 235-246. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a6/

[1] B. C. Arnold, J. A. Villaseñor, “The tallest man in the world”, Statistical Theory and Applications, Springer, New York, 1996, 81–88 | MR

[2] A. G. Pakes, “Extreme order statistics on Galton-Watson trees”, Metrika, 47:2 (1998), 95–117 | DOI | MR

[3] K. Mitov, G. Yanev, “Maximum individual score in critical two-type branching processes”, C. R. Acad. Bulgare Sci., 55:11 (2002), 17–22 | MR

[4] A. V. Lebedev, “Maxima of random particles scores in Markov branching processes with continuous time”, Extremes, 11:2 (2008), 203–216 | DOI | MR

[5] A. V. Lebedev, Neklassicheskie zadachi stokhasticheskoi teorii ekstremumov, Dis. $\dots$ dokt. fiz.-matem. nauk, Mosk. un-t, M., 2016

[6] A. V. Lebedev, “Mnogomernye ekstremumy sluchainykh priznakov chastits v vetvyaschikhsya protsessakh s maksimum-lineinoi nasledstvennostyu”, Matem. zametki, 105:3 (2019), 395–405 | DOI

[7] V. A. Vatutin, Vetvyaschiesya protsessy i ikh primeneniya, Lekts. kursy NOTs, 8, MIAN, M., 2008, 108 pp. | DOI

[8] R. B. Nelsen, An Introduction to Copulas, Springer, New York, 2006 | MR

[9] A. V. Karpenko, “Novye svoistva dvumernykh maksimumov priznakov chastits v vetvyaschikhsya protsessakh s nepreryvnym vremenem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2020, no. 1, 17–23

[10] K. Ghoudi, A. Khoudraji, L. Rivest, “Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles”, Canad. J. Statist., 26:1 (1998), 187–197 | MR