Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_2_a6, author = {A. V. Karpenko}, title = {Properties of {Two-Dimensional} {Maxima} of {Particle} {Scores} in {Critical} {Branching} {Processes} with {Immigration} and {Continuous} {Time}}, journal = {Matemati\v{c}eskie zametki}, pages = {235--246}, publisher = {mathdoc}, volume = {109}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a6/} }
TY - JOUR AU - A. V. Karpenko TI - Properties of Two-Dimensional Maxima of Particle Scores in Critical Branching Processes with Immigration and Continuous Time JO - Matematičeskie zametki PY - 2021 SP - 235 EP - 246 VL - 109 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a6/ LA - ru ID - MZM_2021_109_2_a6 ER -
%0 Journal Article %A A. V. Karpenko %T Properties of Two-Dimensional Maxima of Particle Scores in Critical Branching Processes with Immigration and Continuous Time %J Matematičeskie zametki %D 2021 %P 235-246 %V 109 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a6/ %G ru %F MZM_2021_109_2_a6
A. V. Karpenko. Properties of Two-Dimensional Maxima of Particle Scores in Critical Branching Processes with Immigration and Continuous Time. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 235-246. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a6/
[1] B. C. Arnold, J. A. Villaseñor, “The tallest man in the world”, Statistical Theory and Applications, Springer, New York, 1996, 81–88 | MR
[2] A. G. Pakes, “Extreme order statistics on Galton-Watson trees”, Metrika, 47:2 (1998), 95–117 | DOI | MR
[3] K. Mitov, G. Yanev, “Maximum individual score in critical two-type branching processes”, C. R. Acad. Bulgare Sci., 55:11 (2002), 17–22 | MR
[4] A. V. Lebedev, “Maxima of random particles scores in Markov branching processes with continuous time”, Extremes, 11:2 (2008), 203–216 | DOI | MR
[5] A. V. Lebedev, Neklassicheskie zadachi stokhasticheskoi teorii ekstremumov, Dis. $\dots$ dokt. fiz.-matem. nauk, Mosk. un-t, M., 2016
[6] A. V. Lebedev, “Mnogomernye ekstremumy sluchainykh priznakov chastits v vetvyaschikhsya protsessakh s maksimum-lineinoi nasledstvennostyu”, Matem. zametki, 105:3 (2019), 395–405 | DOI
[7] V. A. Vatutin, Vetvyaschiesya protsessy i ikh primeneniya, Lekts. kursy NOTs, 8, MIAN, M., 2008, 108 pp. | DOI
[8] R. B. Nelsen, An Introduction to Copulas, Springer, New York, 2006 | MR
[9] A. V. Karpenko, “Novye svoistva dvumernykh maksimumov priznakov chastits v vetvyaschikhsya protsessakh s nepreryvnym vremenem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2020, no. 1, 17–23
[10] K. Ghoudi, A. Khoudraji, L. Rivest, “Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles”, Canad. J. Statist., 26:1 (1998), 187–197 | MR