An Example of a Banach Space with Non-Lipschitzian Metric Projection on Any Straight Line
Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 196-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an example of a three-dimensional strictly convex normed space on which the operator of metric projection onto any straight line does not satisfy the Lipschitz condition.
Keywords: Banach space, metric projection, Chebyshev set, Lipschitz condition.
@article{MZM_2021_109_2_a3,
     author = {L. Sh. Burusheva},
     title = {An {Example} of a {Banach} {Space} with {Non-Lipschitzian} {Metric} {Projection} on {Any} {Straight} {Line}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {196--205},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a3/}
}
TY  - JOUR
AU  - L. Sh. Burusheva
TI  - An Example of a Banach Space with Non-Lipschitzian Metric Projection on Any Straight Line
JO  - Matematičeskie zametki
PY  - 2021
SP  - 196
EP  - 205
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a3/
LA  - ru
ID  - MZM_2021_109_2_a3
ER  - 
%0 Journal Article
%A L. Sh. Burusheva
%T An Example of a Banach Space with Non-Lipschitzian Metric Projection on Any Straight Line
%J Matematičeskie zametki
%D 2021
%P 196-205
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a3/
%G ru
%F MZM_2021_109_2_a3
L. Sh. Burusheva. An Example of a Banach Space with Non-Lipschitzian Metric Projection on Any Straight Line. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 196-205. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a3/

[1] T. J. McMinn, “On the line segments of a convex surface in $E_3$”, Pacific J. Math., 10:3 (1960), 943–946 | DOI | MR

[2] A. S. Besicovitch, “On the set of directions of linear segments on a convex surface”, Proc. Sympos. Pure Math., 7, Amer. Math. Soc., Providence, RI, 1963, 24–25 | DOI | MR

[3] V. A. Zalgaller, “O $k$-mernykh napravleniyakh, osobykh dlya vypuklogo tela $F$ v $R^n$”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 6, Zap. nauchn. sem. LOMI, 27, Izd-vo «Nauka», Leningrad. otd., L., 1972, 67–72 | MR | Zbl

[4] R. Holmes, B. Kripke, “Smoothness of Approximation”, Michigan Math. J., 15:2 (1968), 225–248 | DOI | MR

[5] V. I. Berdyshev, “Prostranstva s ravnomerno nepreryvnoi metricheskoi proektsiei”, Matem. zametki, 17:1 (1975), 3–12 | MR | Zbl

[6] P. A. Borodin, “Koeffitsient lineinosti operatora metricheskogo proektirovaniya na chebyshevskoe podprostranstvo”, Matem. zametki, 85:2 (2009), 180–188 | DOI | MR | Zbl