On Uniform Pringsheim Convergence of Double Trigonometric Series with Rarely Changing Coefficients
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 67-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions (in particular, on the order of decrease of the coefficients) for the uniform Pringsheim convergence of double trigonometric series with rarely changing coefficients are found.
Keywords: double trigonometric series, rarely changing coefficients, uniform Pringsheim convergence.
@article{MZM_2021_109_1_a6,
     author = {V. S. Kolesnikov},
     title = {On {Uniform} {Pringsheim} {Convergence} of {Double} {Trigonometric} {Series} with {Rarely} {Changing} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {67--81},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a6/}
}
TY  - JOUR
AU  - V. S. Kolesnikov
TI  - On Uniform Pringsheim Convergence of Double Trigonometric Series with Rarely Changing Coefficients
JO  - Matematičeskie zametki
PY  - 2021
SP  - 67
EP  - 81
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a6/
LA  - ru
ID  - MZM_2021_109_1_a6
ER  - 
%0 Journal Article
%A V. S. Kolesnikov
%T On Uniform Pringsheim Convergence of Double Trigonometric Series with Rarely Changing Coefficients
%J Matematičeskie zametki
%D 2021
%P 67-81
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a6/
%G ru
%F MZM_2021_109_1_a6
V. S. Kolesnikov. On Uniform Pringsheim Convergence of Double Trigonometric Series with Rarely Changing Coefficients. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 67-81. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a6/

[1] S. A. Telyakovskii, “O ravnomernoi skhodimosti trigonometricheskikh ryadov s redko menyayuschimisya koeffitsientami”, Matem. zametki, 70:4 (2001), 613–620 | DOI | MR | Zbl

[2] V. S. Kolesnikov, “O ravnomernoi skhodimosti dvoinykh trigonometricheskikh ryadov s redko menyayuschimisya koeffitsientami”, Sovremennye metody teorii funktsii i smezhnye problemy, Materialy Mezhdunarodnoi konferentsii «Voronezhskaya zimnyaya matematicheskaya shkola» (28 yanvarya – 2 fevralya 2019 g.), Voronezh, 2019, 150–150

[3] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[4] S. B. Stechkin, “Ob absolyutnoi skhodimosti ryadov Fure (trete soobschenie)”, Izv. AN SSSR. Ser. matem., 20:3 (1956), 385–412 | MR | Zbl