On Uniform Pringsheim Convergence of Double Trigonometric Series with Rarely Changing Coefficients
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 67-81
Cet article a éte moissonné depuis la source Math-Net.Ru
Conditions (in particular, on the order of decrease of the coefficients) for the uniform Pringsheim convergence of double trigonometric series with rarely changing coefficients are found.
Keywords:
double trigonometric series, rarely changing coefficients, uniform Pringsheim convergence.
@article{MZM_2021_109_1_a6,
author = {V. S. Kolesnikov},
title = {On {Uniform} {Pringsheim} {Convergence} of {Double} {Trigonometric} {Series} with {Rarely} {Changing} {Coefficients}},
journal = {Matemati\v{c}eskie zametki},
pages = {67--81},
year = {2021},
volume = {109},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a6/}
}
V. S. Kolesnikov. On Uniform Pringsheim Convergence of Double Trigonometric Series with Rarely Changing Coefficients. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 67-81. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a6/
[1] S. A. Telyakovskii, “O ravnomernoi skhodimosti trigonometricheskikh ryadov s redko menyayuschimisya koeffitsientami”, Matem. zametki, 70:4 (2001), 613–620 | DOI | MR | Zbl
[2] V. S. Kolesnikov, “O ravnomernoi skhodimosti dvoinykh trigonometricheskikh ryadov s redko menyayuschimisya koeffitsientami”, Sovremennye metody teorii funktsii i smezhnye problemy, Materialy Mezhdunarodnoi konferentsii «Voronezhskaya zimnyaya matematicheskaya shkola» (28 yanvarya – 2 fevralya 2019 g.), Voronezh, 2019, 150–150
[3] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[4] S. B. Stechkin, “Ob absolyutnoi skhodimosti ryadov Fure (trete soobschenie)”, Izv. AN SSSR. Ser. matem., 20:3 (1956), 385–412 | MR | Zbl