On Uniform Pringsheim Convergence of Double Trigonometric Series with Rarely Changing Coefficients
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 67-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions (in particular, on the order of decrease of the coefficients) for the uniform Pringsheim convergence of double trigonometric series with rarely changing coefficients are found.
Keywords: double trigonometric series, rarely changing coefficients, uniform Pringsheim convergence.
@article{MZM_2021_109_1_a6,
     author = {V. S. Kolesnikov},
     title = {On {Uniform} {Pringsheim} {Convergence} of {Double} {Trigonometric} {Series} with {Rarely} {Changing} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {67--81},
     year = {2021},
     volume = {109},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a6/}
}
TY  - JOUR
AU  - V. S. Kolesnikov
TI  - On Uniform Pringsheim Convergence of Double Trigonometric Series with Rarely Changing Coefficients
JO  - Matematičeskie zametki
PY  - 2021
SP  - 67
EP  - 81
VL  - 109
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a6/
LA  - ru
ID  - MZM_2021_109_1_a6
ER  - 
%0 Journal Article
%A V. S. Kolesnikov
%T On Uniform Pringsheim Convergence of Double Trigonometric Series with Rarely Changing Coefficients
%J Matematičeskie zametki
%D 2021
%P 67-81
%V 109
%N 1
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a6/
%G ru
%F MZM_2021_109_1_a6
V. S. Kolesnikov. On Uniform Pringsheim Convergence of Double Trigonometric Series with Rarely Changing Coefficients. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 67-81. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a6/

[1] S. A. Telyakovskii, “O ravnomernoi skhodimosti trigonometricheskikh ryadov s redko menyayuschimisya koeffitsientami”, Matem. zametki, 70:4 (2001), 613–620 | DOI | MR | Zbl

[2] V. S. Kolesnikov, “O ravnomernoi skhodimosti dvoinykh trigonometricheskikh ryadov s redko menyayuschimisya koeffitsientami”, Sovremennye metody teorii funktsii i smezhnye problemy, Materialy Mezhdunarodnoi konferentsii «Voronezhskaya zimnyaya matematicheskaya shkola» (28 yanvarya – 2 fevralya 2019 g.), Voronezh, 2019, 150–150

[3] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[4] S. B. Stechkin, “Ob absolyutnoi skhodimosti ryadov Fure (trete soobschenie)”, Izv. AN SSSR. Ser. matem., 20:3 (1956), 385–412 | MR | Zbl