Density of Derivatives of Simple Partial Fractions in Hardy Spaces in the Half-Plane
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 57-66

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the sums $$ \sum_{k=1}^{n} \frac{1}{(z-a_{k})^{2}}, \qquad \operatorname{Im}a_{k} 0, \quad n \in \mathbb{N}, $$ are dense in all Hardy spaces $H_{p}$, $1$, in the upper half-plane and in the space of functions analytic in the upper half-plane, continuous in its closure, and tending to zero at infinity.
Keywords: approximation, density, Hardy spaces.
Mots-clés : simple partial fractions
@article{MZM_2021_109_1_a5,
     author = {N. A. Dyuzhina},
     title = {Density of {Derivatives} of {Simple} {Partial} {Fractions} in {Hardy} {Spaces} in the {Half-Plane}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {57--66},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a5/}
}
TY  - JOUR
AU  - N. A. Dyuzhina
TI  - Density of Derivatives of Simple Partial Fractions in Hardy Spaces in the Half-Plane
JO  - Matematičeskie zametki
PY  - 2021
SP  - 57
EP  - 66
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a5/
LA  - ru
ID  - MZM_2021_109_1_a5
ER  - 
%0 Journal Article
%A N. A. Dyuzhina
%T Density of Derivatives of Simple Partial Fractions in Hardy Spaces in the Half-Plane
%J Matematičeskie zametki
%D 2021
%P 57-66
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a5/
%G ru
%F MZM_2021_109_1_a5
N. A. Dyuzhina. Density of Derivatives of Simple Partial Fractions in Hardy Spaces in the Half-Plane. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 57-66. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a5/