Preservation of the Existence of Zeros in a Family of Set-Valued Functionals and Some Consequences
Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 837-850.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem on the preservation of the existence of zeros under the change of the parameter in a one-parameter family of $(\alpha,\beta)$-search functionals on an open subset of a metric space is proved. The following corollaries of this theorem are presented: on the preservation of the existence of preimages of a given closed subspace in a parametric family of multivalued mappings of metric spaces; on the preservation of the existence of coincidence points in a finite collection of two or more families of multivalued mappings of metric spaces; on the preservation of the existence of common fixed points in a collection of families of multivalued mappings to itself of a metric space. As a simple particular case, the Frigon–Granas theorem (1994) on fixed points of a contraction family of multivalued mappings is obtained.
Keywords: search functional, family of set-valued functionals, fixed point, coincidence point, contraction family of mappings.
@article{MZM_2020_108_6_a2,
     author = {Yu. N. Zakharyan and T. N. Fomenko},
     title = {Preservation of the {Existence} of {Zeros} in a {Family} of {Set-Valued} {Functionals} and {Some} {Consequences}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {837--850},
     publisher = {mathdoc},
     volume = {108},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a2/}
}
TY  - JOUR
AU  - Yu. N. Zakharyan
AU  - T. N. Fomenko
TI  - Preservation of the Existence of Zeros in a Family of Set-Valued Functionals and Some Consequences
JO  - Matematičeskie zametki
PY  - 2020
SP  - 837
EP  - 850
VL  - 108
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a2/
LA  - ru
ID  - MZM_2020_108_6_a2
ER  - 
%0 Journal Article
%A Yu. N. Zakharyan
%A T. N. Fomenko
%T Preservation of the Existence of Zeros in a Family of Set-Valued Functionals and Some Consequences
%J Matematičeskie zametki
%D 2020
%P 837-850
%V 108
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a2/
%G ru
%F MZM_2020_108_6_a2
Yu. N. Zakharyan; T. N. Fomenko. Preservation of the Existence of Zeros in a Family of Set-Valued Functionals and Some Consequences. Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 837-850. http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a2/

[1] S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations intégrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR | Zbl

[2] S. B. Nadler Jr., “Multi-valued contraction mappings”, Notices of Amer. Math. Soc., 14 (1967), 930

[3] S. B. Nadler Jr., “Multi-valued contraction mappings”, Pacific J. Math., 30 (1969), 475–488 | DOI | MR | Zbl

[4] M. Frigon, A. Granas, “Résultats du type de Leray–Schauder pour des contractions multivoques”, Topol. Methods Nonlinear Anal., 4:1 (1994), 197–208 | DOI | MR | Zbl

[5] M. Frigon, “On continuation methods for contractive and nonexpansive mappings”, Recent Advances on Metric Fixed Point Theory (Sevilla, 1995), Univ. of Sevilla, Seville, 1996, 19–30 | MR | Zbl

[6] T. N. Fomenko, “O priblizhenii k tochkam sovpadeniya i obschim nepodvizhnym tochkam nabora otobrazhenii metricheskikh prostranstv”, Matem. zametki, 86:1 (2009), 110–125 | DOI | MR | Zbl

[7] T. N. Fomenko, “K zadache kaskadnogo poiska mnozhestva sovpadenii nabora mnogoznachnykh otobrazhenii”, Matem. zametki, 86:2 (2009), 304–309 | DOI | MR | Zbl

[8] T. N. Fomenko, “Cascade search principle and its applications to the coincidence problem of $n$ one-valued or multi-valued mappings”, Topology Appl., 157:4 (2010), 760–773 | DOI | MR | Zbl

[9] T. N. Fomenko, “Kaskadnyi poisk proobrazov i sovpadenii: globalnaya i lokalnaya versii”, Matem. zametki, 93:1 (2013), 127–143 | DOI | MR | Zbl

[10] Yu. N. Zakharyan, T. N. Fomenko, “O sovpadeniyakh pary mnogoznachnykh otobrazhenii tipa Zamfiresku” (to appear)

[11] Yu. N. Zakharyan, T. N. Fomenko, “Sokhranenie nulei u semeistva mnogoznachnykh funktsionalov i prilozheniya k teorii nepodvizhnykh tochek i sovpadenii”, Dokl. AN. Matem., inform., protsessy uprav., 493:1 (2020), 13–17