On the Hierarchical Behavior of Solutions of the Maryland Equation in the Semiclassical Approximation
Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 941-946.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: quasiperiodic Schrödinger equation, hierarchical behavior of solutions, semiclassical approximation.
@article{MZM_2020_108_6_a12,
     author = {F. Klopp and A. A. Fedotov},
     title = {On the {Hierarchical} {Behavior} of {Solutions} of the {Maryland} {Equation} in the {Semiclassical} {Approximation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {941--946},
     publisher = {mathdoc},
     volume = {108},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a12/}
}
TY  - JOUR
AU  - F. Klopp
AU  - A. A. Fedotov
TI  - On the Hierarchical Behavior of Solutions of the Maryland Equation in the Semiclassical Approximation
JO  - Matematičeskie zametki
PY  - 2020
SP  - 941
EP  - 946
VL  - 108
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a12/
LA  - ru
ID  - MZM_2020_108_6_a12
ER  - 
%0 Journal Article
%A F. Klopp
%A A. A. Fedotov
%T On the Hierarchical Behavior of Solutions of the Maryland Equation in the Semiclassical Approximation
%J Matematičeskie zametki
%D 2020
%P 941-946
%V 108
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a12/
%G ru
%F MZM_2020_108_6_a12
F. Klopp; A. A. Fedotov. On the Hierarchical Behavior of Solutions of the Maryland Equation in the Semiclassical Approximation. Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 941-946. http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a12/

[1] S. Jitomirskaya, W. Liu, Comm. Pure Appl. Math., 70:6 (2017), 1025–1051 | DOI | MR | Zbl

[2] P. B. Wiegmann, A. V. Zabrodin, Nuclear Phys. B, 422:3 (1994), 495–514 | DOI | MR | Zbl

[3] Ya. G. Sinai, J. Statist. Phys., 46:5-6 (1987), 861–909 | DOI | MR

[4] B. Helffer, J. Sjöstrand, Analyse semi-classique pour l'équation de Harper (avec application à l'équation de Schrödinger avec champ magnétique), Mém. Soc. Math. France (N.S.), 34, Soc. Math. France, Paris, 1988 | MR

[5] A. A. Fedotov, Algebra i analiz, 25:2 (2013), 203–235 | MR | Zbl

[6] A. Fedotov, F. Klopp, “Pointwise existence of the Lyapunov exponent for a quasi-periodic equation”, Mathematical Results in Quantum Mechanics, World Sci. Publ., Hackensack, NJ, 2008, 66–78 | MR | Zbl

[7] S. Jitomirskaya, W. Lui, Ann. of Math. (2), 187:3 (2018), 721–776 | DOI | MR | Zbl

[8] A. Ya. Khinchin, Tsepnye drobi, Nauka, M., 1978 | MR | Zbl

[9] B. Simon, Ann. Physics, 159:1 (1985), 157–183 | DOI | MR | Zbl

[10] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[11] A. Fedotov, F. Sandomirskyi, Comm. Math. Phys., 334:2 (2015), 1083–1099 | DOI | MR | Zbl

[12] V. S. Buslaev, A. A. Fedotov, Algebra i analiz, 6:3 (1994), 59–83 | MR | Zbl

[13] A. A. Fedotov, E. V. Schetka, Algebra i analiz, 29:2 (2017), 193–219

[14] A. Fedotov, F. Klopp, SIAM J. Math. Anal., 51:6 (2019), 4413–4447 | DOI | MR | Zbl

[15] A. Fedotov, F. Klopp, “WKB asymptotics of meromorphic solutions to difference equations”, Appl. Anal., 2019 | DOI