Estimates of the Values of $n$-Widths of Classes of Analytic Functions in the Weight Spaces $H_{2,\gamma}(D)$
Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 803-822.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a simply connected bounded domain $D\subset\mathbb C$ with rectifiable Jordan boundary $\partial D$, we study the classes $H_{2,\gamma}(D;\Omega_k,\Phi)$, $k\in\mathbb N$, consisting of analytic functions $f\in H_{2,\gamma}(D)$ in $D$ each of which, for any $t\in(0,1)$, satisfies the condition $\Omega_k(f,t)\le\Phi(t)$. Here $\Omega_k(f)$ is the generalized modulus of continuity of $k$th order in $H_{2,\gamma}(D)$ and $\Phi$ is a majorant. For these classes, we find upper and lower bounds for various $n$-widths, as well as upper bounds for the moduli of Fourier coefficients. We obtain a constraint on the majorant $\Phi$ under which the exact values of these extremal characteristics can be calculated. In the case of the unit disk, similar results are obtained for classes of analytic functions whose definitions include the Hadamard compositions $\mathscr D(\mathscr B_m,f)$ in addition to $\Omega_k(f)$ and $\Phi$. Concrete realizations of some obtained exact results are presented.
Keywords: weight function, orthogonal system of polynomials, generalized modulus of continuity, Fourier series, $n$-width.
Mots-clés : majorant, Fourier coefficient, Hadamard composition
@article{MZM_2020_108_6_a0,
     author = {S. B. Vakarchuk},
     title = {Estimates of the {Values} of $n${-Widths} of {Classes} of {Analytic} {Functions} in the {Weight} {Spaces} $H_{2,\gamma}(D)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--822},
     publisher = {mathdoc},
     volume = {108},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a0/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - Estimates of the Values of $n$-Widths of Classes of Analytic Functions in the Weight Spaces $H_{2,\gamma}(D)$
JO  - Matematičeskie zametki
PY  - 2020
SP  - 803
EP  - 822
VL  - 108
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a0/
LA  - ru
ID  - MZM_2020_108_6_a0
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T Estimates of the Values of $n$-Widths of Classes of Analytic Functions in the Weight Spaces $H_{2,\gamma}(D)$
%J Matematičeskie zametki
%D 2020
%P 803-822
%V 108
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a0/
%G ru
%F MZM_2020_108_6_a0
S. B. Vakarchuk. Estimates of the Values of $n$-Widths of Classes of Analytic Functions in the Weight Spaces $H_{2,\gamma}(D)$. Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 803-822. http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a0/

[1] V. M. Tikhomirov, “Teoriya priblizhenii”, Analiz – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 14, VINITI, M., 1987, 103–260 | MR | Zbl

[2] A. Pinkus, $n$-Widths in Approximation Theory, Springer-Verlag, Berlin, 1985 | MR | Zbl

[3] S. D. Fisher, Function Theory on Planar Domains. A Second Course in Complex Analyses, John Wiley Sons, New York, 2007 | MR

[4] Yu. A. Farkov, “O nailuchshem lineinom priblizhenii golomorfnykh funktsii”, Fundament. i prikl. matem., 19:5 (2014), 185–212 | MR | Zbl

[5] S. B. Vakarchuk, M. Sh. Shabozov, “O poperechnikakh klassov funktsii, analiticheskikh v kruge”, Matem. sb., 201:8 (2010), 3–22 | DOI | MR | Zbl

[6] L. V. Taikov, “Poperechniki nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 22:2 (1977), 285–295 | MR | Zbl

[7] N. Ainulloev, L. V. Taikov, “Nailuchshee priblizhenie v smysle A. N. Kolmogorova klassov analiticheskikh v edinichnom kruge funktsii”, Matem. zametki, 40:3 (1986), 341–351 | MR | Zbl

[8] V. P. Zakharyuta, N. I. Skiba, “Otsenki $n$-poperechnikov nekotorykh klassov funktsii, analiticheskikh na rimanovykh poverkhnostyakh”, Matem. zametki, 19:6 (1976), 899–911 | MR | Zbl

[9] M. Z. Dveirin, “Zadachi nailuchshego priblizheniya klassov funktsii, analiticheskikh v edinichnom kruge”, Teoriya priblizheniya funktsii, Nauka, M., 1977, 129–132

[10] O. G. Parfenov, “Poperechniki odnogo klassa analiticheskikh funktsii”, Matem. sb., 117(159):2 (1982), 279–285 | MR | Zbl

[11] Yu. A. Farkov, “Poperechniki klassov Khardi i Bergmana v share iz $\mathbb C^n$”, UMN, 45:5 (275) (1990), 197–198 | MR | Zbl

[12] K. Yu. Osipenko, M. I. Stesin, “O poperechnikakh klassa Khardi $H_2$ v $n$-mernom share”, UMN, 45:5 (275) (1990), 193–194 | MR | Zbl

[13] S. B. Vakarchuk, “Tochnye znacheniya poperechnikov klassov analiticheskikh v kruge funktsii i nailuchshie lineinye metody priblizheniya”, Matem. zametki, 72:5 (2002), 665–669 | DOI | MR | Zbl

[14] S. B. Vakarchuk, V. I. Zabutnaya, “O nailuchshikh lineinykh metodakh priblizheniya funktsii klassov L. V. Taikova v prostranstvakh Khardi $H_{q,\rho}$, $q\ge1$, $0\rho\le1$”, Matem. zametki, 85:3 (2009), 323–329 | DOI | MR | Zbl

[15] M. Sh. Shabozov, G. A. Yusupov, “Nailuchshie metody priblizheniya i znacheniya poperechnikov nekotorykh klassov funktsii v prostranstve $H_{q,\rho}$, $1\le q\le\infty$, $0\rho\le1$”, Sib. matem. zhurn., 57:2 (2016), 469–478 | DOI | MR | Zbl

[16] V. A. Abilov, F. V. Abilova, M. K. Kerimov, “Tochnye otsenki skorosti skhodimosti ryadov Fure funktsii kompleksnoi peremennoi v prostranstve $L_2(D, p(z))$”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 999–1004 | MR | Zbl

[17] M. Sh. Shabozov, M. S. Saidusainov, “Verkhnie grani priblizheniya nekotorykh klassov funktsii kompleksnoi peremennoi ryadami Fure v prostranstve $L_2$ i znacheniya $n$-poperechnikov”, Matem. zametki, 103:4 (2018), 617–631 | DOI | Zbl

[18] Yu. I. Grigoryan, “Poperechniki nekotorykh mnozhestv v funktsionalnykh prostranstvakh”, UMN, 30:3 (183) (1975), 161–162 | MR | Zbl

[19] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[20] J. T. Scheik, “Polynomial approximation of functions analytic in a disk”, Proc. Amer. Math. Soc., 17:6 (1966), 1238–1243 | DOI | MR

[21] S. B. Vakarchuk, “Ob otsenkakh v $L_2(\mathbb{R})$ srednikh $\nu$-poperechnikov klassov funktsii, opredelennykh pri pomoschi obobschennogo modulya nepreryvnosti $\omega_{\mathcal{M}}$”, Matem. zametki, 106:2 (2019), 198–211 | DOI | Zbl

[22] S. B. Vakarchuk, “O priblizhenii klassicheskimi ortogonalnymi polinomami s vesom v prostranstvakh $L_{2,\gamma}(a,b)$ i o poperechnikakh funktsionalnykh klassov”, Izv. vuzov. Matem., 2019, no. 12, 37–51 | DOI | Zbl

[23] D. Gaier, Lektsii po teorii approksimatsii v kompleksnoi oblasti, Mir, M., 1986 | MR

[24] A. I. Markushevich, Teoriya analiticheskikh funktsii. T. 2. Dalneishee postroenie teorii, Nauka, M., 1968 | MR | Zbl

[25] P. K. Suetin, “Mnogochleny, ortogonalnye po ploschadi, i mnogochleny Biberbakha”, Tr. MIAN SSSR, 100, 1971, 3–90 | MR | Zbl

[26] T. Carleman, “Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen”, Ark. Mat. Astron. Fys., 17:9 (1923), 1–30 | Zbl

[27] S. N. Mergelyan, “O polnote sistem analiticheskikh funktsii”, UMN, 8:4 (56) (1953), 3–63 | MR | Zbl

[28] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.–L., 1964 | MR | Zbl

[29] M. Keldych, “Sur l'approximation en moyenne par polynômes des fonctions d'une variable complexe”, Matem. sb., 16 (58):1 (1945), 1–20 | MR | Zbl

[30] V. L. Goncharov, Teoriya interpolirovaniya i priblizheniya funktsii, GITTL, M., 1954 | MR

[31] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976

[32] V. N. Temlyakov, Approximation of Periodic Functions, Nova Sci. Publ., Commack, NY, 1993 | MR | Zbl