Lyapunov Functions, Krasnosel'skii Canonical Domains, and the Existence of Poisson Bounded Solutions
Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 750-756 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The notions of Poisson boundedness and Poisson partial boundedness of solutions of systems are introduced. Based on the Lyapunov function method and Krasnosel'skii's method of canonical domains, a sufficient condition for the existence of Poisson bounded solutions is obtained.
Keywords: Poisson bounded solution, partially bounded solution, Lyapunov function, Krasnosel'skii canonical domain.
Mots-clés : existence of solutions
@article{MZM_2020_108_5_a8,
     author = {K. S. Lapin},
     title = {Lyapunov {Functions,} {Krasnosel'skii} {Canonical} {Domains,} and the {Existence} of {Poisson} {Bounded} {Solutions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {750--756},
     year = {2020},
     volume = {108},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a8/}
}
TY  - JOUR
AU  - K. S. Lapin
TI  - Lyapunov Functions, Krasnosel'skii Canonical Domains, and the Existence of Poisson Bounded Solutions
JO  - Matematičeskie zametki
PY  - 2020
SP  - 750
EP  - 756
VL  - 108
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a8/
LA  - ru
ID  - MZM_2020_108_5_a8
ER  - 
%0 Journal Article
%A K. S. Lapin
%T Lyapunov Functions, Krasnosel'skii Canonical Domains, and the Existence of Poisson Bounded Solutions
%J Matematičeskie zametki
%D 2020
%P 750-756
%V 108
%N 5
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a8/
%G ru
%F MZM_2020_108_5_a8
K. S. Lapin. Lyapunov Functions, Krasnosel'skii Canonical Domains, and the Existence of Poisson Bounded Solutions. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 750-756. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a8/

[1] T. Yoshizawa, “Liapunovs function and boundedness of solutions”, Funkcialaj Ekvacioj, 2 (1959), 95–142 | MR | Zbl

[2] V. V. Rumyantsev, A. S. Oziraner, Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR | Zbl

[3] K. S. Lapin, “Ogranichennost v predele reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 49:10 (2013), 1281–1286 | Zbl

[4] K. S. Lapin, “Chastichnaya ravnomernaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 50:3 (2014), 309–316 | Zbl

[5] K. S. Lapin, “Chastichnaya totalnaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Matem. zametki, 99:2 (2016), 239–247 | DOI | MR | Zbl

[6] V. I. Vorotnikov, “Ob ustoichivosti i ustoichivosti po chasti peremennykh chastichnykh polozhenii ravnovesiya nelineinykh dinamicheskikh sistem”, Dokl. AN, 389:3 (2003), 332–337 | MR

[7] V. I. Vorotnikov, Yu. G. Martyshenko, “K teorii chastichnoi ustoichivosti nelineinykh dinamicheskikh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 2010, no. 5, 23–31 | Zbl

[8] V. I. Vorotnikov, Yu. G. Martyshenko, “Ob ustoichivosti po chasti peremennykh “chastichnykh” polozhenii ravnovesiya sistem s posledeistviem”, Matem. zametki, 96:4 (2014), 496–503 | DOI | MR | Zbl

[9] M. A. Krasnoselskii, Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | Zbl

[10] V. G. Zvyagin, S. V. Kornev, Metod napravlyayuschikh funktsii i ego modifikatsii, LENAND, M., 2018

[11] K. S. Lapin, “Ravnomernaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Differents. uravneniya, 54:1 (2018), 40–50 | Zbl

[12] K. S. Lapin, “Ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii i funktsii Lyapunova”, Matem. zametki, 103:2 (2018), 223–235 | DOI | Zbl

[13] K. S. Lapin, “Vektor-funktsii Lyapunova i ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii”, Matem. zametki, 104:1 (2018), 74–86 | DOI | Zbl

[14] K. S. Lapin, “Totalnaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Matem. zametki, 104:2 (2018), 243–254 | DOI | Zbl

[15] K. S. Lapin, “Vysshie proizvodnye funktsii Lyapunova i ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii”, Sib. matem. zhurn., 59:6 (2018), 1383–1388 | DOI | Zbl

[16] A. P. Kartashev, B. L. Rozhdestvenskii, Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1980 | Zbl