Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_5_a8, author = {K. S. Lapin}, title = {Lyapunov {Functions,} {Krasnosel'skii} {Canonical} {Domains,} and the {Existence} of {Poisson} {Bounded} {Solutions}}, journal = {Matemati\v{c}eskie zametki}, pages = {750--756}, publisher = {mathdoc}, volume = {108}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a8/} }
TY - JOUR AU - K. S. Lapin TI - Lyapunov Functions, Krasnosel'skii Canonical Domains, and the Existence of Poisson Bounded Solutions JO - Matematičeskie zametki PY - 2020 SP - 750 EP - 756 VL - 108 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a8/ LA - ru ID - MZM_2020_108_5_a8 ER -
K. S. Lapin. Lyapunov Functions, Krasnosel'skii Canonical Domains, and the Existence of Poisson Bounded Solutions. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 750-756. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a8/
[1] T. Yoshizawa, “Liapunovs function and boundedness of solutions”, Funkcialaj Ekvacioj, 2 (1959), 95–142 | MR | Zbl
[2] V. V. Rumyantsev, A. S. Oziraner, Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR | Zbl
[3] K. S. Lapin, “Ogranichennost v predele reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 49:10 (2013), 1281–1286 | Zbl
[4] K. S. Lapin, “Chastichnaya ravnomernaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 50:3 (2014), 309–316 | Zbl
[5] K. S. Lapin, “Chastichnaya totalnaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Matem. zametki, 99:2 (2016), 239–247 | DOI | MR | Zbl
[6] V. I. Vorotnikov, “Ob ustoichivosti i ustoichivosti po chasti peremennykh chastichnykh polozhenii ravnovesiya nelineinykh dinamicheskikh sistem”, Dokl. AN, 389:3 (2003), 332–337 | MR
[7] V. I. Vorotnikov, Yu. G. Martyshenko, “K teorii chastichnoi ustoichivosti nelineinykh dinamicheskikh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 2010, no. 5, 23–31 | Zbl
[8] V. I. Vorotnikov, Yu. G. Martyshenko, “Ob ustoichivosti po chasti peremennykh “chastichnykh” polozhenii ravnovesiya sistem s posledeistviem”, Matem. zametki, 96:4 (2014), 496–503 | DOI | MR | Zbl
[9] M. A. Krasnoselskii, Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | Zbl
[10] V. G. Zvyagin, S. V. Kornev, Metod napravlyayuschikh funktsii i ego modifikatsii, LENAND, M., 2018
[11] K. S. Lapin, “Ravnomernaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Differents. uravneniya, 54:1 (2018), 40–50 | Zbl
[12] K. S. Lapin, “Ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii i funktsii Lyapunova”, Matem. zametki, 103:2 (2018), 223–235 | DOI | Zbl
[13] K. S. Lapin, “Vektor-funktsii Lyapunova i ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii”, Matem. zametki, 104:1 (2018), 74–86 | DOI | Zbl
[14] K. S. Lapin, “Totalnaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Matem. zametki, 104:2 (2018), 243–254 | DOI | Zbl
[15] K. S. Lapin, “Vysshie proizvodnye funktsii Lyapunova i ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii”, Sib. matem. zhurn., 59:6 (2018), 1383–1388 | DOI | Zbl
[16] A. P. Kartashev, B. L. Rozhdestvenskii, Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1980 | Zbl