Comparison Method for Studying Equations in Metric Spaces
Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 702-713.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the equation $G(x,x)=y$, where $G\colon X\times X\to Y$ and $X$ and $Y$ are metric spaces. This operator equation is compared with the “model” equation $g(t,t)=0$, where the function $g\colon \mathbb{R}_+\times \mathbb{R}_+ \to\mathbb{R}$ is continuous, nondecreasing in the first argument, and nonincreasing in the second argument. Conditions are obtained under which the existence of solutions of this operator equation follows from the solvability of the “model” equation. Conditions for the stability of the solutions under small variations in the mapping $G$ are established. The statements proved in the present paper extend the Kantorovich fixed-point theorem for differentiable mappings of Banach spaces, as well as its generalizations to coincidence points of mappings of metric spaces.
Keywords: equation in metric space, stability, coincidence point, fixed point.
Mots-clés : existence of a solution
@article{MZM_2020_108_5_a5,
     author = {E. S. Zhukovskiy},
     title = {Comparison {Method} for {Studying} {Equations} in {Metric} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {702--713},
     publisher = {mathdoc},
     volume = {108},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a5/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
TI  - Comparison Method for Studying Equations in Metric Spaces
JO  - Matematičeskie zametki
PY  - 2020
SP  - 702
EP  - 713
VL  - 108
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a5/
LA  - ru
ID  - MZM_2020_108_5_a5
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%T Comparison Method for Studying Equations in Metric Spaces
%J Matematičeskie zametki
%D 2020
%P 702-713
%V 108
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a5/
%G ru
%F MZM_2020_108_5_a5
E. S. Zhukovskiy. Comparison Method for Studying Equations in Metric Spaces. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 702-713. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a5/

[1] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[2] L. V. Kantorovich, “Nekotorye dalneishie primeneniya metoda Nyutona”, Vestn. Leningr. un-ta. Matematika, mekhanika, astronomiya, 1957, no. 7, 68–103 | Zbl

[3] O. Zubelevich, “Coincidence points of mappings in Banach spaces”, Fixed Point Theory, 21:1 (2020), 389–394

[4] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “Teorema Kantorovicha o nepodvizhnykh tochkakh v metricheskikh prostranstvakh i tochki sovpadeniya”, Optimalnoe upravlenie i differentsialnye uravneniya, Tr. MIAN, 304, MIAN, M., 2019, 68–82 | DOI

[5] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “On the stability of fixed points and coincidence points of mappings in the generalized Kantorovich's theorem”, Topology Appl., 275 (2020), 107030 | DOI | MR | Zbl

[6] A. Arutyunov, E. Avakov, B. Gel'man, A. Dmitruk, V. Obukhovskii, “Locally covering maps in metric spaces and coincidence points”, J. Fixed Point Theory Appl., 5:1 (2009), 105–127 | MR | Zbl

[7] A. V. Arutyunov, “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Dokl. AN, 416:2 (2007), 151–155 | MR | Zbl

[8] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskii, “O korrektnosti differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differents. uravneniya, 47:11 (2011), 1523–1537 | MR | Zbl

[9] E. S. Zhukovskii, V. Merchela, “O nepreryvnoi zavisimosti ot parametra mnozhestva reshenii operatornogo uravneniya”, Izv. IMI UdGU, 54 (2019), 27–37 | DOI

[10] V. S. Treschev, “Korrektnaya razreshimost sistem operatornykh uravnenii s vektornymi nakryvayuschimi otobrazheniyami”, Vestn. Tambov. un-ta. Ser. Estestv. i tekhn. nauki, 20:5 (2015), 1487–1489

[11] E. A. Pluzhnikova, “Korrektnaya razreshimost zadach upravleniya dlya sistem differentsialnykh uravnenii neyavnogo vida”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 3, 49–64 | Zbl

[12] A. V. Arutyunov, “Ustoichivost tochek sovpadeniya i svoistva nakryvayuschikh otobrazhenii”, Matem. zametki, 86:2 (2009), 163–169 | DOI | MR | Zbl

[13] A. V. Arutyunov, E. R. Avakov, S. E. Zhukovskiy, “Stability theorems for estimating the distance to a set of coincidence points”, SIAM J. Optim., 25:2 (2015), 807–828 | MR | Zbl