General Solution of a Cauchy--Riemann-Type Equation with Power-Law Singularities in Lower-Order Coefficients
Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 791-795.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Cauchy–Riemann equation, Pompeiu operator, power-law singularities, general solution.
@article{MZM_2020_108_5_a14,
     author = {A. B. Rasulov},
     title = {General {Solution} of a {Cauchy--Riemann-Type} {Equation} with {Power-Law} {Singularities} in {Lower-Order} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {791--795},
     publisher = {mathdoc},
     volume = {108},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a14/}
}
TY  - JOUR
AU  - A. B. Rasulov
TI  - General Solution of a Cauchy--Riemann-Type Equation with Power-Law Singularities in Lower-Order Coefficients
JO  - Matematičeskie zametki
PY  - 2020
SP  - 791
EP  - 795
VL  - 108
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a14/
LA  - ru
ID  - MZM_2020_108_5_a14
ER  - 
%0 Journal Article
%A A. B. Rasulov
%T General Solution of a Cauchy--Riemann-Type Equation with Power-Law Singularities in Lower-Order Coefficients
%J Matematičeskie zametki
%D 2020
%P 791-795
%V 108
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a14/
%G ru
%F MZM_2020_108_5_a14
A. B. Rasulov. General Solution of a Cauchy--Riemann-Type Equation with Power-Law Singularities in Lower-Order Coefficients. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 791-795. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a14/

[1] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatlit, M., 1959 | MR | Zbl

[2] A. V. Bitsadze, Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR | Zbl

[3] L. G. Mikhailov, Novye klassy osobykh integralnykh uravnenii i ikh primenenie k differentsialnym uravneniyam s singulyarnymi koeffitsientami, TadzhikNIINTI, Dushanbe, 1963

[4] Z. D. Usmanov, Obobschennye sistemy Koshi–Rimana s singulyarnoi tochkoi, Izd-vo AN Tadzh. SSR, Dushanbe, 1993

[5] N. R. Radzhabov, Vvedenie v teoriyu differentsialnykh uravnenii v chastnykh proizvodnykh so sverkhsingulyarnymi koeffitsientami, Izd-vo TGU, Dushanbe, 1992

[6] A. B. Rasulov, A. P. Soldatov, Differents. uravneniya, 52:5 (2016), 637–650 | Zbl

[7] A. Tungatarov, S. A. Abdymanapov, Nekotorye klassy ellipticheskikh sistem na ploskosti s singulyarnymi koeffitsientami, G-ylym, Almaty, 2005

[8] H. Begehr, Dao-Qing Dai, J. Differential Equations, 196:1 (2004), 67–90 | MR | Zbl

[9] M. Reissig, A. Timofeev, Complex Variables, 50:7-11 (2005), 653–672 | Zbl

[10] A. Meziani, Complex Var. Elliptic Equ., 53:12 (2008), 1111–1130 | MR | Zbl

[11] A. L. Goncharov, S. B. Klimentov, “Postroenii nelokalnykh reshenii obobschennykh sistem Koshi–Rimana s singulyarnoi tochkoi”, Mezhdunarodnaya shkola-seminar po geometrii i analizu pamyati N. V. Efimova, 5–11 sentyabrya 1998 goda, Abrau-Dyurso, Tezisy dokladov, 1998, 185–187

[12] A. P. Soldatov, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. AN, 2009, no. 11, 74–78