Elliptic Differential-Difference Equations in the Half-Space
Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 764-770.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem in the half-space for elliptic differential-difference equations with operators that are compositions of differential and difference operators is considered. For this problem, classical solvability or solvability almost everywhere (depending on the constraints imposed on the boundary data) is proved, an integral representation of the found solution in terms of a Poisson-type formula is constructed, and its convergence to zero as the time-like independent variable tends to infinity is proved.
Keywords: differential-difference equations, elliptic problems.
@article{MZM_2020_108_5_a10,
     author = {A. B. Muravnik},
     title = {Elliptic {Differential-Difference} {Equations} in the {Half-Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {764--770},
     publisher = {mathdoc},
     volume = {108},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a10/}
}
TY  - JOUR
AU  - A. B. Muravnik
TI  - Elliptic Differential-Difference Equations in the Half-Space
JO  - Matematičeskie zametki
PY  - 2020
SP  - 764
EP  - 770
VL  - 108
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a10/
LA  - ru
ID  - MZM_2020_108_5_a10
ER  - 
%0 Journal Article
%A A. B. Muravnik
%T Elliptic Differential-Difference Equations in the Half-Space
%J Matematičeskie zametki
%D 2020
%P 764-770
%V 108
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a10/
%G ru
%F MZM_2020_108_5_a10
A. B. Muravnik. Elliptic Differential-Difference Equations in the Half-Space. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 764-770. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a10/

[1] V. A. Kondratev, E. M. Landis, “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Differentsialnye uravneniya s chastnymi proizvodnymi – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 32, VINITI, M., 1988, 99–215 | MR | Zbl

[2] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[3] M. A. Vorontsov, N. G. Iroshnikov, R. I. Abernathy, “Diffractive patterns in a nonlinear optical two-dimensional feedback system with field rotation”, Chaos Solitons Fractals, 4:8-9 (1994), 1701–1716 | Zbl

[4] A. L. Skubachevskii, “O bifurkatsii Khopfa dlya kvazilineinogo parabolicheskogo funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 34:10 (1998), 1394–1401 | MR | Zbl

[5] A. L. Skubachevskii, “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Anal., 32:2 (1998), 261–278 | MR | Zbl

[6] A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhäuser Verlag, Basel, 1997 | MR | Zbl

[7] A. L. Skubachevskii, “Kraevye zadachi dlya ellipticheskikh funktsionalno-differentsialnykh uravnenii i ikh prilozheniya”, UMN, 71:5(431) (2016), 3–112 | DOI | MR | Zbl

[8] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi. I”, SMFN, 26, RUDN, M., 2007, 3–132 | MR | Zbl

[9] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi. II”, Uravneniya v chastnykh proizvodnykh, SMFN, 33, RUDN, M., 2009, 3–179 | MR

[10] P. L. Gurevich, “Ellipticheskie zadachi s nelokalnymi kraevymi usloviyami i polugruppy Fellera”, Uravneniya v chastnykh proizvodnykh, SMFN, 38, RUDN, M., 2010, 3–173 | MR | Zbl

[11] A. B. Muravnik, “O zadache Dirikhle v poluploskosti dlya differentsialno-raznostnykh ellipticheskikh uravnenii”, Trudy Sedmoi Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam (Moskva, 22–29 avgusta, 2014). Chast 3, SMFN, 60, RUDN, M., 2016, 102–113

[12] A. B. Muravnik, “Asimptoticheskie svoistva reshenii zadachi Dirikhle v poluploskosti dlya nekotorykh differentsialno-raznostnykh ellipticheskikh uravnenii”, Matem. zametki, 100:4 (2016), 566–576 | DOI | MR | Zbl

[13] A. B. Muravnik, “On the half-plane Dirichlet problem for differential-difference elliptic equations with several nonlocal terms”, Math. Model. Nat. Phenom., 12:6 (2017), 130–143 | MR | Zbl

[14] A. B. Muravnik, “Asimptoticheskie svoistva reshenii dvumernykh differentsialno-raznostnykh ellipticheskikh zadach”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 63, no. 4, Rossiiskii universitet druzhby narodov, M., 2017, 678–688 | DOI

[15] A. B. Muravnik, “O stabilizatsii reshenii singulyarnykh ellipticheskikh uravnenii”, Fundament. i prikl. matem., 12:4 (2006), 169–186 | MR | Zbl

[16] I. M. Gelfand, G. E. Shilov, “Preobrazovaniya Fure bystro rastuschikh funktsii i voprosy edinstvennosti resheniya zadachi Koshi”, UMN, 8:6 (58) (1953), 3–54 | MR | Zbl

[17] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii. Vyp. 3. Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958 | MR | Zbl

[18] G. E. Shilov, Matematicheskii analiz, Vtoroi spetsialnyi kurs, Izd-vo Mosk. un-ta, M., 1984 | Zbl