On Disjointly Homogeneous Orlicz--Lorentz Spaces
Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 643-656.

Voir la notice de l'article provenant de la source Math-Net.Ru

A characterization of disjointly homogeneous Orlicz–Lorentz function spaces $\Lambda_{\varphi,w}$ is obtained. It is used to find necessary and sufficient conditions for an analog of the classical Dunford–Pettis theorem about the equi-integrability of weakly compact sets in $L_1$ to hold in the space $\Lambda_{\varphi,w}$. It is also shown that there exists an Orlicz function $\Phi$ with the upper Matuszewska–Orlicz index equal to $1$ for which such an analog in the space $\Lambda_{\Phi,w}$ does not hold. This answers a recent question of Leśnik, Maligranda, and Tomaszewski.
Keywords: Orlicz–Lorentz space, Orlicz space, Orlicz function, symmetric space, disjointly homogeneous space, weakly compact set, Matuszewska–Orlicz indices.
@article{MZM_2020_108_5_a0,
     author = {S. V. Astashkin and S. I. Strakhov},
     title = {On {Disjointly} {Homogeneous} {Orlicz--Lorentz} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--656},
     publisher = {mathdoc},
     volume = {108},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - S. I. Strakhov
TI  - On Disjointly Homogeneous Orlicz--Lorentz Spaces
JO  - Matematičeskie zametki
PY  - 2020
SP  - 643
EP  - 656
VL  - 108
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a0/
LA  - ru
ID  - MZM_2020_108_5_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A S. I. Strakhov
%T On Disjointly Homogeneous Orlicz--Lorentz Spaces
%J Matematičeskie zametki
%D 2020
%P 643-656
%V 108
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a0/
%G ru
%F MZM_2020_108_5_a0
S. V. Astashkin; S. I. Strakhov. On Disjointly Homogeneous Orlicz--Lorentz Spaces. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 643-656. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a0/

[1] F. Albiac, N. J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math., 233, Springer, New York, 2006 | MR | Zbl

[2] S. V. Astashkin, N. Kalton, F. A. Sukochev, “Cesaro mean convergence of martingale differences in rearrangement invariant spaces”, Positivity, 12:3 (2008), 387–406 | MR | Zbl

[3] J. Lindenstrauss, L. Tzafriri, “On Orlicz sequence spaces. III”, Israel J. Math., 14 (1973), 368–389 | MR | Zbl

[4] A. Kaminska, Y. Raynaud, “Isomorphic copies in the lattice $E$ and its symmetrization $E^*$ with applications to Orlicz–Lorentz spaces”, J. Funct. Anal., 257:1 (2009), 271–331 | MR | Zbl

[5] K. Leśnik, L. Maligranda, J. Tomaszewski, Weakly Compact Sets and Weakly Compact Pointwise Multipliers in Banach Function Lattices, 2019, arXiv: 1912.08164

[6] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[7] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Springer-Verlag, Berlin, 1979 | MR | Zbl

[8] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces, Springer-Verlag, Berlin, 1977 | MR | Zbl

[9] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math., 5, Univ. Campinas, Campinas, 1989 | MR | Zbl

[10] A. Kaminska, “Some remarks on Orlicz–Lorentz spaces”, Math. Nachr., 147 (1990), 29–38 | MR | Zbl

[11] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, GIFML, M., 1958 | MR

[12] J. Flores, P. Tradacete, V. G. Troitsky, “Disjointly homogeneous Banach lattices and compact products of operators”, J. Math. Anal. Appl., 354 (2009), 657–663 | MR | Zbl

[13] J. Flores, F. L. Hernandez, E. M. Semenov, P. Tradacete, “Strictly singular and power-compact operators on Banach lattices”, Israel J. Math., 188 (2012), 323–352 | MR | Zbl

[14] J. Flores, F. L. Hernandez, E. Spinu, P. Tradacete, V. G. Troitsky, “Disjointly homogeneous Banach lattices: duality and complementation”, J. Funct. Anal., 266:9 (2014), 5858–5885 | MR | Zbl

[15] S. V. Astashkin, “Duality problem for disjointly homogeneous rearrangement invariant spaces”, J. Funct. Anal., 276:10 (2019), 3205–3225 | MR | Zbl

[16] C. Bennett, R. Sharpley, Interpolation of Operators, Boston, MA, Acad. Press, 1988 | MR | Zbl

[17] S. V. Astashkin, “Rearrangement invariant spaces satisfying Dunford–Pettis criterion of weak compactness”, Functional Analysis and Geometry, Contemp. Math., 733, Amer. Math. Soc., Providence, RI, 2019, 45–59 | MR | Zbl

[18] E. Lavergne, “Reflexive subspaces of some Orlicz spaces”, Colloq. Math., 113:2 (2008), 333–340 | MR | Zbl

[19] S. I. Strakhov, “Kharakterizatsiya prostranstv Orlicha, skhodimost na refleksivnykh podprostranstvakh kotorykh ekvivalentna skhodimosti po mere”, Sib. matem. zhurn., 60:4 (2019), 881–890 | DOI | Zbl

[20] S. V. Astashkin, S. I. Strakhov, “O simmetrichnykh prostranstvakh so skhodimostyu po mere na refleksivnykh podprostranstvakh”, Izv. vuzov. Matem., 2018, no. 8, 3–11 | Zbl