On Rational Approximation of Markov Functions by Partial Sums of Fourier Series on a Chebyshev--Markov System
Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 572-587.

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximations on the closed interval $[-1,1]$ of functions that are combinations of classical Markov functions by partial sums of Fourier series on a system of Chebyshev–Markov rational fractions are considered. Pointwise and uniform estimates for approximations are established. For the case in which the derivative of the measure is weakly equivalent to a power function, an asymptotic expression for the majorant of uniform approximations and an optimal parameter value ensuring the greatest rate of approximation by the method used in the paper are found. In the case of the even multiplicity of the poles of the approximating function, the asymptotic estimate is sharp. Examples of approximations of concrete functions are given.
Keywords: Markov function, partial sums of Fourier series, Chebyshev–Markov fractions, asymptotic estimates
Mots-clés : exact constants.
@article{MZM_2020_108_4_a8,
     author = {Y. A. Rovba and P. G. Potseiko},
     title = {On {Rational} {Approximation} of {Markov} {Functions} by {Partial} {Sums} of {Fourier} {Series} on a {Chebyshev--Markov} {System}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {572--587},
     publisher = {mathdoc},
     volume = {108},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a8/}
}
TY  - JOUR
AU  - Y. A. Rovba
AU  - P. G. Potseiko
TI  - On Rational Approximation of Markov Functions by Partial Sums of Fourier Series on a Chebyshev--Markov System
JO  - Matematičeskie zametki
PY  - 2020
SP  - 572
EP  - 587
VL  - 108
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a8/
LA  - ru
ID  - MZM_2020_108_4_a8
ER  - 
%0 Journal Article
%A Y. A. Rovba
%A P. G. Potseiko
%T On Rational Approximation of Markov Functions by Partial Sums of Fourier Series on a Chebyshev--Markov System
%J Matematičeskie zametki
%D 2020
%P 572-587
%V 108
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a8/
%G ru
%F MZM_2020_108_4_a8
Y. A. Rovba; P. G. Potseiko. On Rational Approximation of Markov Functions by Partial Sums of Fourier Series on a Chebyshev--Markov System. Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 572-587. http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a8/

[1] A. A. Gonchar, “O skorosti ratsionalnoi approksimatsii nekotorykh analiticheskikh funktsii”, Matem. sb., 105 (147):2 (1978), 147–163 | MR | Zbl

[2] J.-E. Andersson, “Best rational approximation to Markov functions”, J. Approx. Theory, 76:2 (1994), 219–232 | DOI | MR | Zbl

[3] A. A. Pekarskii, “Nailuchshie ravnomernye ratsionalnye priblizheniya funktsii Markova”, Algebra i analiz, 7:2 (1995), 121–132 | MR | Zbl

[4] D. Braess, “Rational approximation of Stieltjes functions by the Caratheodory–Fejér method”, Constr. Approx., 3:1 (1987), 43–50 | DOI | MR | Zbl

[5] L. Baratchart, H. Stahl, F. Wielonsky, “Asymptotic error estimates for $L^2$ best rational approximants to Markov functions”, J. Approx. Theory, 108:1 (2001), 53–96 | DOI | MR | Zbl

[6] V. A. Prokhorov, “On rational approximation of Markov functions on finite sets”, J. Approx. Theory, 191 (2015), 94–117 | DOI | MR | Zbl

[7] N. S. Vyacheslavov, E. P. Mochalina, “Ratsionalnye priblizheniya funktsii tipa Markova–Stiltesa v prostranstvakh Khardi $H^{p}$, $0

\leq\infty$”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2008, no. 4, 3–13 | MR | Zbl

[8] A. A. Pekarskii, E. A. Rovba, “Ravnomernye priblizheniya funktsii Stiltesa posredstvom ortoproektsii na mnozhestvo ratsionalnykh funktsii”, Matem. zametki, 65:3 (1999), 362–368 | DOI | MR | Zbl

[9] Y. A. Rouba, E. G. Mikulich, “Constants in rational approximation of Markov–Stieltjes functions with fixed number of poles”, Vesn. of Y. Kupala State Univ. Grodno. Ser. 2. Math. Phys. Inform., Comp. Tech. and its Control, 2013, no. 1 (148), 12–20

[10] Y. Rouba, P. Patseika, K. Smatrytski, “On a system of rational Chebyshev–Markov fractions”, Anal. Math., 44:1 (2018), 115–140 | DOI | MR | Zbl

[11] M. M. Dzhrbashyan, “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izv. AN Arm. SSR. Ser. fiz.-matem. estest. tekhn. nauki, 9:7 (1956), 3–28 | MR

[12] M. M. Dzhrbashyan, A. A. Kitbalyan, “Ob odnom obobschenii polinomov Chebysheva”, Dokl. AN Arm. SSR, 38:5 (1964), 263–270 | MR | Zbl

[13] J.-E. Andersson, “Rational approximation to functions like $x^\alpha$ in integral norms”, Anal. Math., 14:1 (1988), 11–25 | DOI | MR | Zbl

[14] S. N. Bernstein, “Sur la valeur asymptotique de la meilleure approximation des fonctions analytiques admettant des singularités données”, Belg. Bull. Sci., 1913, 76–90 | Zbl

[15] M. A. Evgrafov, Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR | Zbl

[16] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl

[17] E. T. Copson, Asymptotic Expansions, Cambridge Tracts in Math. and Math. Phys., 55, Cambridge Univ. Press, Cambridge, 1965 | MR | Zbl