On Popular Sums and Differences for Sets with Small Multiplicative Doubling
Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 561-571.

Voir la notice de l'article provenant de la source Math-Net.Ru

We improve an estimate for the additive energy of sets $A$ with small product $AA$. The proof uses some properties of level sets of convolutions of the indicator function of $A$, namely, their almost invariance under multiplication by elements of $A$.
Keywords: arithmetic combinatorics, small multiplicative doubling, additive energy, sumset, sum-product theorem.
@article{MZM_2020_108_4_a7,
     author = {K. I. Olmezov and A. S. Semchankau and I. D. Shkredov},
     title = {On {Popular} {Sums} and {Differences} for {Sets} with {Small} {Multiplicative} {Doubling}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {561--571},
     publisher = {mathdoc},
     volume = {108},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a7/}
}
TY  - JOUR
AU  - K. I. Olmezov
AU  - A. S. Semchankau
AU  - I. D. Shkredov
TI  - On Popular Sums and Differences for Sets with Small Multiplicative Doubling
JO  - Matematičeskie zametki
PY  - 2020
SP  - 561
EP  - 571
VL  - 108
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a7/
LA  - ru
ID  - MZM_2020_108_4_a7
ER  - 
%0 Journal Article
%A K. I. Olmezov
%A A. S. Semchankau
%A I. D. Shkredov
%T On Popular Sums and Differences for Sets with Small Multiplicative Doubling
%J Matematičeskie zametki
%D 2020
%P 561-571
%V 108
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a7/
%G ru
%F MZM_2020_108_4_a7
K. I. Olmezov; A. S. Semchankau; I. D. Shkredov. On Popular Sums and Differences for Sets with Small Multiplicative Doubling. Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 561-571. http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a7/

[1] J. Bourgain, “More on the sum-product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1:1 (2005), 1–32 | DOI | MR | Zbl

[2] J. Bourgain, “Estimates on exponential sums related to the Diffie–Hellman distributions”, Geom. Funct. Anal., 15:1 (2005), 1–34 | MR | Zbl

[3] C. V. Konyagin, “Otsenki trigonometricheskikh summ po podgruppam i summ Gaussa”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”. Aktualnye problemy, Ch. III, M., 2002, 86–114 | MR | Zbl

[4] J. B. Friedlander, J. Hansen, I. E. Shparlinski, “Character sums with exponential functions”, Mathematika, 47:1-2 (2000), 75–85 | MR | Zbl

[5] M. Rudnev, G. Shakan, I. Shkredov, “Stronger sum-product inequalities for small sets”, Proc. Amer. Math. Soc., 148:4 (2020), 1467–1479 | MR | Zbl

[6] G. Shakan, On Higher Energy Decomposition and the Sum-Product Phenomenon, 2018, arXiv: 1803.04637

[7] J. Bourgain, M.-Ch. Chang, “On the size of $k$-fold sum and product sets of integers”, J. Amer. Math. Soc., 17:2 (2004), 473–497 | DOI | MR | Zbl

[8] I. D. Shkredov, “Some remarks on the asymmetric sum-product phenomenon”, Mosc. J. Comb. Number Theory, 8:1 (2019), 15–41 | MR | Zbl

[9] B. Murphy, M. Rudnev, I. D. Shkredov, Yu. N. Shteinikov, “On the few products, many sums problem”, J. Theor. Nombres Bordeaux, 31:3 (2019), 573–603 | MR

[10] I. D. Shkredov, “Neskolko zamechanii o mnozhestvakh s malym chastnym”, Matem. sb., 208:12 (2017), 144–158 | DOI | MR | Zbl

[11] T. Schoen, I. D. Shkredov, “Higher moments of convolutions”, J. Number Theory, 133:5 (2013), 1693–1737 | DOI | MR | Zbl

[12] I. D. Shkredov, “Neskolko novykh rezultatov o starshikh energiyakh”, Tr. MMO, 74, no. 1, MTsNMO, M., 2013, 35–73 | MR | Zbl

[13] I. V. Vyugin, I. D. Shkredov, “Ob additivnykh sdvigakh multiplikativnykh podgrupp”, Matem. sb., 203:6 (2012), 81–100 | DOI | MR | Zbl

[14] T. Tao, V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[15] I. D. Shkredov, “Neskolko zamechanii k teoreme o razlozhimosti Baloga–Vuli i velichinakh $D^{+}$, $D^\times$”, Teoriya chisel i prilozheniya, 2, Sovr. probl. matem., 24, MIAN, M., 2017, 85–103 | DOI | MR

[16] E. Szemerédi, W. T. Trotter, “Extremal problems in discrete geometry”, Combinatorica, 3:3-4 (1983), 381–392 | DOI | MR | Zbl

[17] I. D. Shkredov, “O summakh mnozhestv Semeredi–Trottera”, Izbrannye voprosy matematiki i mekhaniki, Tr. MIAN, 289, MAIK «Nauka/Interperiodika», M., 2015, 318–327 | DOI

[18] G. Elekes, “On the number of sums and products”, Acta Arith., 81:4 (1997), 365–367 | DOI | MR | Zbl

[19] J. Bourgain, N. Katz, T. Tao, “A sum-product estimate in finite fields, and applications”, Geom. Funct. Anal., 14:1 (2004), 27–57 | MR | Zbl