Inverse Subsemigroups of the Bicyclic Semigroup
Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 552-560.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, a complete description of the inverse subsemigroups of the bicyclic semigroup is given. Isomorphism conditions for two inverse subsemigroups are found. From the inverse subsemigroups under consideration, a category is constructed, and the existence of a functor from this category to the category of finite ordered sets of numbers is proved.
Keywords: bicyclic semigroup, inverse subsemigroup, bicyclicity component, category.
@article{MZM_2020_108_4_a6,
     author = {K. H. Hovsepyan},
     title = {Inverse {Subsemigroups} of the {Bicyclic} {Semigroup}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {552--560},
     publisher = {mathdoc},
     volume = {108},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a6/}
}
TY  - JOUR
AU  - K. H. Hovsepyan
TI  - Inverse Subsemigroups of the Bicyclic Semigroup
JO  - Matematičeskie zametki
PY  - 2020
SP  - 552
EP  - 560
VL  - 108
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a6/
LA  - ru
ID  - MZM_2020_108_4_a6
ER  - 
%0 Journal Article
%A K. H. Hovsepyan
%T Inverse Subsemigroups of the Bicyclic Semigroup
%J Matematičeskie zametki
%D 2020
%P 552-560
%V 108
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a6/
%G ru
%F MZM_2020_108_4_a6
K. H. Hovsepyan. Inverse Subsemigroups of the Bicyclic Semigroup. Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 552-560. http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a6/

[1] Ch. Ehresmann, “Oeuvres complètes et commentées. III-1. Catégories structurées et quotients”, Cahiers Topologie Géom. Différentielle, 21, Suppl. 1 (1980) ; “III-2. Catégories internes et fibrations”, Cahiers Topologie Géom. Différentielle, 21, Suppl. 2 (1980), 428–872 ; “IV-1. Esquisses et complétions”, Cahiers Topologie Géom. Différentielle, 22, Suppl. 1 (1981) ; “II-1. Structures locales”, Cahiers Topologie Géom. Différentielle, 22, Suppl. 2 (1981) ; “II-2. Catégories ordonnées. Applications des ordres en topologie”, Cahiers Topologie Géom. Différentielle, 23, Suppl. 1 (1982), 432–778 ; “IV-2. Esquisses et structures monoïdales fermées”, Cahiers Topologie Géom. Différentielle, 23, Suppl. 2 (1983), 407–823 | MR | Zbl | MR | MR | Zbl | MR | MR | MR

[2] G. B. Preston, “Inverse semi-groups”, J. London Math. Soc., 29:4 (1954), 396–403 | DOI | MR | Zbl

[3] V. B. Vagner, “Polugruppy chastichnykh preobrazovanii s simmetrichnym otnosheniem tranzitivnosti”, Izv. vuzov. Matem., 1957, no. 1, 81–88 | MR | Zbl

[4] A. Cayley, “On the theory of groups, as depending on the symbolic equation $\theta^n=1$”, Philosophical Magazine, 7 (1854), 40–47

[5] G. B. Preston, “Representation of inverse semi-groups”, J. London Math. Soc., 29 (1954), 411–419 | DOI | MR | Zbl

[6] B. A. Barnes, “Representation of the $\ell^1$-algebra of an inverse semigroups”, Trans. Amer. Math. Soc., 218:1 (1978), 361–396 | MR

[7] V. A. Arzumanyan, “$*$-Predstavleniya inversnykh polugrupp”, Izv. NAN Armenii. Matem., 13:2 (1976), 107–113

[8] E. V. Lipacheva, K. G. Ovsepyan, “Struktura podalgebr algebry Teplitsa, nepodvizhnykh otnositelno konechnoi gruppy avtomorfizmov”, Izv. vuzov. Matem., 2015, no. 6, 14–23 | Zbl

[9] L. A. Coburn, “The $C^*$-algebra generated by an isometry”, Bull. Amer. Math. Soc., 73 (1967), 722–726 | DOI | MR | Zbl

[10] E. V. Lipacheva, K. G. Ovsepyan, “Struktura invariantnykh idealov nekotorykh podalgebr algebry Teplitsa”, Izv. NAN Armenii. Matem., 50:2 (2015), 38–52 | MR | Zbl

[11] K. H. Hovsepyan, “The $C^*$-algebra $\mathcal{T}_m$ as a crossed product”, Proc. Yerevan State Univ., Phys. Math. Sci., 2014, no. 3, 24–30 | Zbl

[12] E. V. Lipacheva, K. G. Ovsepyan, “Avtomorfizmy nekotorykh podalgebr algebry Teplitsa”, Sib. matem. zhurn., 57:3 (2016), 666–674 | DOI | MR | Zbl

[13] K. G. Ovsepyan, “Tip nekotorykh yadernykh podalgebr algebry Teplitsa, porozhdennykh inversnymi podpolugruppami bitsiklicheskoi polugruppy”, Ukr. matem. zhurn., 69:11 (2017), 1551–1563