Strengthening of Landau's Theorem for Holomorphic Self-Mappings of a Disk with Fixed Points
Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 638-640
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
holomorphic mapping, fixed points, angular derivative
Mots-clés : domain of univalence.
Mots-clés : domain of univalence.
@article{MZM_2020_108_4_a16,
author = {A. P. Solodov},
title = {Strengthening of {Landau's} {Theorem} for {Holomorphic} {Self-Mappings} of a {Disk} with {Fixed} {Points}},
journal = {Matemati\v{c}eskie zametki},
pages = {638--640},
year = {2020},
volume = {108},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a16/}
}
A. P. Solodov. Strengthening of Landau's Theorem for Holomorphic Self-Mappings of a Disk with Fixed Points. Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 638-640. http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a16/
[1] L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Book Co., New York, 1973 | MR | Zbl
[2] F. G. Avkhadiev, L. A. Aksentev, UMN, 30:4(184) (1975), 3–60 | MR | Zbl
[3] E. Landau, Sitzungsberichte Akad. Berlin, 1926, 467–474 | Zbl
[4] Zh. Valiron, Analiticheskie funktsii, GITTL, M., 1957 | MR
[5] J. Becker, Ch. Pommerenke, Comput. Methods Funct. Theory, 17:3 (2017), 487–497 | DOI | MR | Zbl
[6] O. S. Kudryavtseva, A. P. Solodov, Matem. sb., 210:7 (2019), 120–144 | DOI | Zbl
[7] V. V. Goryainov, Matem. sb., 208:3 (2017), 54–71 | DOI | MR | Zbl
[8] V. V. Goryainov, UMN, 67:6 (408) (2012), 5–52 | DOI | MR | Zbl