Two-Sided Estimates of the $L^\infty$-Norm of the Sum of a Sine Series with Monotone Coefficients~$\{b_k\}$ via the $\ell^\infty$-Norm of the Sequence~$\{kb_k\}$
Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 483-489.

Voir la notice de l'article provenant de la source Math-Net.Ru

We refine the classical boundedness criterion for sums of sine series with monotone coefficients $b_k$: the sum of a series is bounded on $\mathbb R$ if and only if the sequence $\{kb_k\}$ is bounded. We derive a two-sided estimate of the Chebyshev norm of the sum of a series via a special norm of the sequence $\{kb_k\}$. The resulting upper bound is sharp, and the constant in the lower bound differs from the exact value by at most $0.2$.
Keywords: two-sided estimate of a norm, sine series
Mots-clés : monotone coefficients.
@article{MZM_2020_108_4_a0,
     author = {E. D. Alferova and A. Yu. Popov},
     title = {Two-Sided {Estimates} of the $L^\infty${-Norm} of the {Sum} of a {Sine} {Series} with {Monotone} {Coefficients~}$\{b_k\}$ via the $\ell^\infty${-Norm} of the {Sequence~}$\{kb_k\}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--489},
     publisher = {mathdoc},
     volume = {108},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a0/}
}
TY  - JOUR
AU  - E. D. Alferova
AU  - A. Yu. Popov
TI  - Two-Sided Estimates of the $L^\infty$-Norm of the Sum of a Sine Series with Monotone Coefficients~$\{b_k\}$ via the $\ell^\infty$-Norm of the Sequence~$\{kb_k\}$
JO  - Matematičeskie zametki
PY  - 2020
SP  - 483
EP  - 489
VL  - 108
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a0/
LA  - ru
ID  - MZM_2020_108_4_a0
ER  - 
%0 Journal Article
%A E. D. Alferova
%A A. Yu. Popov
%T Two-Sided Estimates of the $L^\infty$-Norm of the Sum of a Sine Series with Monotone Coefficients~$\{b_k\}$ via the $\ell^\infty$-Norm of the Sequence~$\{kb_k\}$
%J Matematičeskie zametki
%D 2020
%P 483-489
%V 108
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a0/
%G ru
%F MZM_2020_108_4_a0
E. D. Alferova; A. Yu. Popov. Two-Sided Estimates of the $L^\infty$-Norm of the Sum of a Sine Series with Monotone Coefficients~$\{b_k\}$ via the $\ell^\infty$-Norm of the Sequence~$\{kb_k\}$. Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 483-489. http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a0/

[1] R. P. Boas, Integrability Theorems for Trigonometric Transforms, Springer, New York, 1967 | MR | Zbl

[2] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR | Zbl

[3] G. Polia, G. Sege, Zadachi i teoremy iz analiza., Ch. 1, 2, Nauka, M., 1978 | MR | Zbl

[4] A. Yu. Popov, “Otsenki summ ryadov po sinusam s monotonnymi koeffitsientami nekotorykh klassov”, Matem. zametki, 74:6 (2003), 877–888 | DOI | MR | Zbl

[5] B. P. Demidovich, I. A. Maron, Osnovy vychislitelnoi matematiki, GIFML, Nauka, 1963 | MR

[6] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR