The Geometry of a Singular Set of Hypersurfaces and the Eikonal Equation
Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 441-451.

Voir la notice de l'article provenant de la source Math-Net.Ru

Smooth solutions of the eikonal equation are studied. A relationship between the geometry of a hypersurface and the set of singular points of its metric function on both sides of this hypersurface is investigated.
Mots-clés : eikonal equation
Keywords: singular set, regular point, sun point.
@article{MZM_2020_108_3_a8,
     author = {I. G. Tsar'kov},
     title = {The {Geometry} of a {Singular} {Set} of {Hypersurfaces} and the {Eikonal} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {441--451},
     publisher = {mathdoc},
     volume = {108},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a8/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - The Geometry of a Singular Set of Hypersurfaces and the Eikonal Equation
JO  - Matematičeskie zametki
PY  - 2020
SP  - 441
EP  - 451
VL  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a8/
LA  - ru
ID  - MZM_2020_108_3_a8
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T The Geometry of a Singular Set of Hypersurfaces and the Eikonal Equation
%J Matematičeskie zametki
%D 2020
%P 441-451
%V 108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a8/
%G ru
%F MZM_2020_108_3_a8
I. G. Tsar'kov. The Geometry of a Singular Set of Hypersurfaces and the Eikonal Equation. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 441-451. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a8/

[1] M. Born, E. Volf, Osnovy optiki, Nauka, M., 1970 | MR

[2] Dzh. Brus, P. Dzhiblin, Krivye i osobennosti. Geometricheskoe vvedenie v teoriyu osobennostei, Mir, M., 1988 | MR

[3] R. Feinman, R. Leiton, M. Sends, Feinmanovskie lektsii po fizike. Vyp. 3. Izluchenie. Volny. Kvanty, Mir, M., 1976 | MR

[4] Yu. A. Kravtsov, Yu. I. Orlov, Geometricheskaya optika neodnorodnykh sred, Nauka, M., 1980 | MR

[5] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | MR

[6] S. N. Kruzhkov, “Obobschennye resheniya uravnenii Gamiltona–Yakobi tipa eikonala. I. Postanovka zadach, teoremy suschestvovaniya, edinstvennosti i ustoichivosti, nekotorye svoistva reshenii”, Matem. sb., 98 (140):3 (11) (1975), 450–493 | MR | Zbl

[7] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1 (427) (2016), 3–84 | DOI | MR | Zbl

[8] A. R. Alimov, I. G. Tsarkov, “Svyaznost i drugie geometricheskie svoistva solnts i chebyshevskikh mnozhestv”, Fundament. i prikl. matem., 19:4 (2014), 21–91 | MR

[9] V. S. Balaganskii, L. P. Vlasov, “Problema vypuklosti chebyshevskikh mnozhestv”, UMN, 51:6 (312) (1996), 125–188 | DOI | MR | Zbl

[10] A. R. Alimov, “Ob osobennostyakh reshenii uravneniya eikonala”, Differents. uravneniya, 55:10 (2019), 1354–1359 | DOI

[11] I. G. Tsarkov, “Gladkie resheniya uravneniya eikonala i povedenie lokalnykh minimumov funktsii rasstoyaniya”, Izv. RAN. Ser. matem., 83:6 (2019), 167–194 | DOI

[12] V. S. Balaganskii, “Neobkhodimye usloviya differentsiruemosti funktsii rasstoyaniya”, Matem. zametki, 72:6 (2002), 815–820 | DOI | MR | Zbl

[13] V. Gurevich, G. Volmen, Teoriya razmernosti, IL, M., 1948

[14] J. Keesling, “Hausdorff dimension”, Topology Proc., 11:2 (1986), 349–383 | MR

[15] I. G. Tsar'kov, “Singular sets of surfaces”, Russ. J. Math. Phys., 24:2 (2017), 263–271 | DOI | MR

[16] I. G. Tsar'kov, “Properties of $C^1$-solution to the eikonal equation”, Lobachevskii J. Math., 38:4 (2017), 763–766 | DOI | MR