On the Normality of $\mathfrak F^{\omega}$-Abnormal Maximal Subgroups of Finite Groups
Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 428-440.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the notion of an $\mathfrak F^{\omega}$-abnormal (and $\mathfrak F^{\omega}$-normal) maximal subgroup of a finite group is introduced, where $\mathfrak F$ is a nonempty class of groups and $\omega$ is a nonempty set of primes. The relationship between the $\mathfrak F^{\omega}$-abnormal maximal and normal subgroups is studied. Conditions are established under which $\mathfrak F^{\omega}$-abnormal maximal subgroups in a finite group are normal.
Keywords: finite group, $\mathfrak F^{\omega}$-abnormal maximal subgroup, normal subgroup, class of groups
Mots-clés : formation.
@article{MZM_2020_108_3_a7,
     author = {M. M. Sorokina and S. P. Maksakov},
     title = {On the {Normality} of $\mathfrak F^{\omega}${-Abnormal} {Maximal} {Subgroups} of {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {428--440},
     publisher = {mathdoc},
     volume = {108},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a7/}
}
TY  - JOUR
AU  - M. M. Sorokina
AU  - S. P. Maksakov
TI  - On the Normality of $\mathfrak F^{\omega}$-Abnormal Maximal Subgroups of Finite Groups
JO  - Matematičeskie zametki
PY  - 2020
SP  - 428
EP  - 440
VL  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a7/
LA  - ru
ID  - MZM_2020_108_3_a7
ER  - 
%0 Journal Article
%A M. M. Sorokina
%A S. P. Maksakov
%T On the Normality of $\mathfrak F^{\omega}$-Abnormal Maximal Subgroups of Finite Groups
%J Matematičeskie zametki
%D 2020
%P 428-440
%V 108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a7/
%G ru
%F MZM_2020_108_3_a7
M. M. Sorokina; S. P. Maksakov. On the Normality of $\mathfrak F^{\omega}$-Abnormal Maximal Subgroups of Finite Groups. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 428-440. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a7/

[1] O. Ore, “Contributions to the theory of groups of finite order”, Duke Math. J., 5:2 (1939), 431–460 | DOI | MR

[2] S. A. Chunikhin, “Ob usloviyakh teorem tipa Silova”, Dokl. AN SSSR, 69:6 (1949), 735–737 | MR

[3] O. Kegel, “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78:3 (1962), 205–221 | DOI | MR

[4] Y. Wang, “$c$-normality of groups and its properties”, J. Algebra, 180:3 (1996), 954–965 | DOI | MR

[5] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR

[6] O. Kegel, “Untergruppenverbände endlicher Gruppen, die den Subnormalteilerverband echt enthalten”, Arch. Math. (Basel), 30:3 (1978), 225–228 | MR

[7] W. Gaschütz, “Zur Theorie der endlichen auflösbaren Gruppen”, Math. Z., 80:4 (1963), 300–305 | MR

[8] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978 | MR

[9] R. Carter, T. Hawkes, “The $\mathfrak F$-normalizers of a finite soluble group”, J. Aljebra, 5:2 (1967), 175–202 | DOI | MR

[10] L. A. Shemetkov, “O proizvedenii formatsii”, Dokl. AN BSSR, 28:2 (1984), 101–103 | MR

[11] V. A. Vedernikov, M. M. Sorokina, “O dopolneniyakh k koradikalam konechnykh grupp”, Matem. sb., 207:6 (2016), 27–52 | DOI | MR

[12] V. A. Vedernikov, M. M. Sorokina, “$\mathfrak F$-proektory i $\mathfrak F$-pokryvayuschie podgruppy konechnykh grupp”, Sib. matem. zhurn., 57:6 (2016), 1224–1239 | DOI

[13] GAP, The GAP Small Groups Library, Version 4.10.2, , 2019 www.gap-system.org

[14] L. Ya. Polyakov, “Konechnye gruppy s perestanovochnymi podgruppami”, Konechnye gruppy, Nauka i tekhnika, Minsk, 1966, 75–88 | MR

[15] L. Ya. Polyakov, “K teorii obobschennykh subnormalnykh podgrupp konechnykh grupp”, Podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1981, 62–66 | MR

[16] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992 | MR

[17] V. A. Vedernikov, M. M. Sorokina, “$\omega$-veernye formatsii i klassy Fittinga konechnykh grupp”, Matem. zametki, 71:1 (2002), 43–60 | DOI | MR | Zbl

[18] V. A. Vedernikov, “O novykh tipakh $\omega$-veernykh formatsii konechnykh grupp”, Ukrainskii matematichnyi kongress – 2001, In-t matem. NAN Ukraini, Kiiv, 2002, 36–45 | MR

[19] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[20] A. N. Skiba, L. A. Shemetkov, “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matem. tr., 2:2 (1999), 114–147 | MR | Zbl

[21] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1:2 (1957), 115–187 | DOI | MR

[22] S. A. Chunikhin, Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964 | MR

[23] P. B. Kleidman, “A proof of the Kegel–Wielandt conjecture on subnormal subgroups”, Ann. of Math. (2), 133:2 (1991), 369–428 | DOI | MR