Minimal Contact Circuits for Symmetric Threshold Functions
Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 397-411
Voir la notice de l'article provenant de la source Math-Net.Ru
For the monotone symmetric threshold Boolean functions $$ f^n_2(\widetilde x\mspace{2mu})=\bigvee_{1\le i\le n}x_ix_j,\qquad n=2,3,\dots, $$ it is established that a minimal contact circuit implementing $f^n_2(\widetilde x\mspace{2mu})$ contains $3n-4$ contacts.
Keywords:
Boolean function
Mots-clés : contact circuit, minimal circuit.
Mots-clés : contact circuit, minimal circuit.
@article{MZM_2020_108_3_a5,
author = {N. P. Red'kin},
title = {Minimal {Contact} {Circuits} for {Symmetric} {Threshold} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {397--411},
publisher = {mathdoc},
volume = {108},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a5/}
}
N. P. Red'kin. Minimal Contact Circuits for Symmetric Threshold Functions. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 397-411. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a5/