Minimal Contact Circuits for Symmetric Threshold Functions
Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 397-411

Voir la notice de l'article provenant de la source Math-Net.Ru

For the monotone symmetric threshold Boolean functions $$ f^n_2(\widetilde x\mspace{2mu})=\bigvee_{1\le i\le n}x_ix_j,\qquad n=2,3,\dots, $$ it is established that a minimal contact circuit implementing $f^n_2(\widetilde x\mspace{2mu})$ contains $3n-4$ contacts.
Keywords: Boolean function
Mots-clés : contact circuit, minimal circuit.
@article{MZM_2020_108_3_a5,
     author = {N. P. Red'kin},
     title = {Minimal {Contact} {Circuits} for {Symmetric} {Threshold} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {397--411},
     publisher = {mathdoc},
     volume = {108},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a5/}
}
TY  - JOUR
AU  - N. P. Red'kin
TI  - Minimal Contact Circuits for Symmetric Threshold Functions
JO  - Matematičeskie zametki
PY  - 2020
SP  - 397
EP  - 411
VL  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a5/
LA  - ru
ID  - MZM_2020_108_3_a5
ER  - 
%0 Journal Article
%A N. P. Red'kin
%T Minimal Contact Circuits for Symmetric Threshold Functions
%J Matematičeskie zametki
%D 2020
%P 397-411
%V 108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a5/
%G ru
%F MZM_2020_108_3_a5
N. P. Red'kin. Minimal Contact Circuits for Symmetric Threshold Functions. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 397-411. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a5/