On a Theorem of Matiyasevich
Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 366-379.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the restatement of the Riemann hypothesis proposed in a recent paper of Matiyasevich, we explicitly write out the system of Diophantine equations whose unsolvability is equivalent to this hypothesis.
Keywords: Riemann hypothesis
Mots-clés : Diophantine equations, binomial coefficients.
@article{MZM_2020_108_3_a3,
     author = {B. Z. Moroz and A. A. Norkin},
     title = {On a {Theorem} of {Matiyasevich}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {366--379},
     publisher = {mathdoc},
     volume = {108},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a3/}
}
TY  - JOUR
AU  - B. Z. Moroz
AU  - A. A. Norkin
TI  - On a Theorem of Matiyasevich
JO  - Matematičeskie zametki
PY  - 2020
SP  - 366
EP  - 379
VL  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a3/
LA  - ru
ID  - MZM_2020_108_3_a3
ER  - 
%0 Journal Article
%A B. Z. Moroz
%A A. A. Norkin
%T On a Theorem of Matiyasevich
%J Matematičeskie zametki
%D 2020
%P 366-379
%V 108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a3/
%G ru
%F MZM_2020_108_3_a3
B. Z. Moroz; A. A. Norkin. On a Theorem of Matiyasevich. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 366-379. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a3/

[1] Yu. V. Matiyasevich, “Diofantovo predstavlenie perechislimykh predikatov”, Izv. AN SSSR. Ser. matem., 35:1 (1971), 3–30 | MR | Zbl

[2] Yu. V. Matiyasevich, “Diofantovost perechislimykh mnozhestv”, Dokl. AN SSSR, 191:2 (1970), 279–282 | MR | Zbl

[3] M. Davis, Yu. Matijasevic̆, Ju. Robinson, “Hilbert's tenth problem. Diophantine equations: positive aspects of a negative solution”, Mathematical Developments Arising From Hilbert Problems, Amer. Math. Soc., Providence, RI, 1976, 323–378 | DOI | MR

[4] V. H. Dyson, J. P. Jones, J. C. Shepherdson, “Some Diophantine forms of Gödel's theorem”, Arch. Math. Logik Grundlag., 22:1–2 (1982), 51–60 | MR

[5] M. Carl, B. Z. Moroz, “On a Diophantine representation of the predicate of provability”, Issledovaniya po konstruktivnoi matematike i matematicheskoi logike. XII, Posvyaschaetsya pamyati Nikolaya Aleksandrovicha ShANINA, Zap. nauchn. sem. POMI, 407, POMI, SPb., 2012, 77–104 | MR

[6] M. Carl, B. Z. Moroz, “A polynomial encoding provability in pure mathematics (outline of an explicit construction)”, Bull. Belg. Math. Soc. Simon Stevin, 20:1 (2013), 181–187 | DOI | MR

[7] Yu. V. Matiyasevich, Desyataya problema Gilberta, Nauka, M., 1993 | MR

[8] J. M. Hernandez Caceres, The Riemann Hypothesis and Diophantine Equations, Master's Thesis, Mathematical Institute, University of Bonn, Bonn, 2018

[9] B. Z. Moroz, Gipoteza Rimana i diofantovy uravneniya, Preprint Sankt-Peterburgskogo matem. ob-va No 2018-03, 2018

[10] Yu. V. Matiyasevich, “Gipoteza Rimana kak chetnost spetsialnykh binomialnykh koeffitsientov”, Chebyshevskii sb., 19:3 (2018), 46–60 | DOI

[11] A. A. Norkin, Ob odnom diofantovom uravnenii, nerazreshimost kotorogo ekvivalentna gipoteze Rimana, Diplomnaya rabota na zvanie bakalavra, MFTI, M., 2019

[12] L. Schoenfeld, “Sharper bounds for the Chebyshev functions $\psi(x)$ and $\theta(x)$. II”, Math. Comp., 30 (1976), 337–360 | MR

[13] A. E. Ingam, Raspredelenie prostykh chisel, URSS, M., 2008 | MR

[14] N. Fine, “Binomial coefficients modulo a prime”, Amer. Math. Monthly, 54 (1947), 589–592 | DOI | MR

[15] Yu. Matijasevic̆, Ju. Robinson, “Reduction of an arbitrary Diophantine equation to one in 13 unknowns”, Acta Arith., 27 (1975), 521–553 | DOI | MR

[16] M. Davis, “Hilbert's tenth problem is unsolvable”, Amer. Math. Monthly, 80 (1973), 233–269 | DOI | MR