The Liouville Equation as a Hamiltonian System
Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 360-365.

Voir la notice de l'article provenant de la source Math-Net.Ru

Smooth dynamical systems on closed manifolds with invariant measure are considered. The evolution of the density of a nonstationary invariant measure is described by the well-known Liouville equation. For ergodic dynamical systems, the Liouville equation is expressed in Hamiltonian form. An infinite collection of quadratic invariants that are pairwise in involution with respect to the Poisson bracket generated by the Hamiltonian structure is indicated.
Mots-clés : Liouville equation
Keywords: Hamiltonian systems, integrability.
@article{MZM_2020_108_3_a2,
     author = {V. V. Kozlov},
     title = {The {Liouville} {Equation} as a {Hamiltonian} {System}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {360--365},
     publisher = {mathdoc},
     volume = {108},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a2/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - The Liouville Equation as a Hamiltonian System
JO  - Matematičeskie zametki
PY  - 2020
SP  - 360
EP  - 365
VL  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a2/
LA  - ru
ID  - MZM_2020_108_3_a2
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T The Liouville Equation as a Hamiltonian System
%J Matematičeskie zametki
%D 2020
%P 360-365
%V 108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a2/
%G ru
%F MZM_2020_108_3_a2
V. V. Kozlov. The Liouville Equation as a Hamiltonian System. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 360-365. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a2/

[1] V. V. Kozlov, “Phenomena of nonintegrability in Hamiltonian systems”, Proceedings of the International Congress of Mathematicians, Amer. Math. Soc., Providence, RI, 1987, 1161–1170 | MR

[2] N. G. Moschevitin, “O suschestvovanii i gladkosti integrala gamiltonovoi sistemy opredelennogo vida”, Matem. zametki, 49:5 (1991), 80–85 | MR | Zbl

[3] V. V. Kozlov, “Lineinye sistemy s kvadratichnym integralom i polnaya integriruemost uravneniya Shredingera”, UMN, 74:5 (449) (2019), 189–190 | DOI | MR

[4] V. V. Kozlov, “Lineinye sistemy s kvadratichnym integralom”, PMM, 56:6 (1992), 900–906 | MR | Zbl

[5] D. V. Treschev, A. A. Shkalikov, “O gamiltonovosti lineinykh dinamicheskikh sistem v gilbertovom prostranstve”, Matem. zametki, 101:6 (2017), 911–918 | DOI | MR

[6] V. V. Kozlov, “Multigamiltonovost lineinoi sistemy s kvadratichnym invariantom”, Algebra i analiz, 30:5 (2018), 159–168 | MR

[7] J. Williamson, “An algebraic problem involving the involutory integrals of linear dynamical systems”, Amer. J. Math., 62 (1940), 881–911 | DOI | MR

[8] H. Kocak, “Linear Hamiltonian Systems are Integrable with Quadratics”, J. Math. Phys., 23:12 (1982), 2375–2380 | DOI | MR

[9] V. V. Kozlov, “Linear Hamiltonian systems: quadratic integrals, singular subspaces and stability”, Regul. Chaotic Dyn., 23:1 (2018), 26–46 | DOI | MR

[10] A. B. Zheglov, D. V. Osipov, “O pervykh integralakh lineinykh gamiltonovykh sistem”, Dokl. AN, 483:5 (2018), 482–484 | DOI

[11] A. B. Zheglov, D. V. Osipov, “Pary Laksa dlya lineinykh gamiltonovykh sistem”, Sib. matem. zhurn., 60:4 (2019), 760–776 | DOI