Characterization of Sets with Continuous Metric Projection in the Space~$\ell^\infty_n$
Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 323-333
Voir la notice de l'article provenant de la source Math-Net.Ru
We characterize the subsets of the space $\ell^\infty_n$ with continuous (lower semicontinuous) metric projection. One of the characteristic properties is the strict solarity of both the set and any nonempty intersection thereof with any support coordinate hyperplane.
Keywords:
strict sun, continuity of metric projection, lower semicontinuity of metric projection, strictly monotone path-connected set.
@article{MZM_2020_108_3_a0,
author = {A. R. Alimov},
title = {Characterization of {Sets} with {Continuous} {Metric} {Projection} in the {Space~}$\ell^\infty_n$},
journal = {Matemati\v{c}eskie zametki},
pages = {323--333},
publisher = {mathdoc},
volume = {108},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a0/}
}
A. R. Alimov. Characterization of Sets with Continuous Metric Projection in the Space~$\ell^\infty_n$. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 323-333. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a0/