Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_3_a0, author = {A. R. Alimov}, title = {Characterization of {Sets} with {Continuous} {Metric} {Projection} in the {Space~}$\ell^\infty_n$}, journal = {Matemati\v{c}eskie zametki}, pages = {323--333}, publisher = {mathdoc}, volume = {108}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a0/} }
A. R. Alimov. Characterization of Sets with Continuous Metric Projection in the Space~$\ell^\infty_n$. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 323-333. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a0/
[1] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1 (427) (2016), 3–84 | DOI | MR | Zbl
[2] I. G. Tsarkov, “Gladkie resheniya uravneniya eikonala i povedenie lokalnykh minimumov funktsii rasstoyaniya”, Izv. RAN. Ser. matem., 83:6 (2019), 167–194 | DOI
[3] A. I. Komech, E. A. Kopylova, “Attraktory nelineinykh gamiltonovykh uravnenii v chastnykh proizvodnykh”, UMN, 75:1 (451) (2020), 3–94 | DOI
[4] A. R. Alimov, I. G. Tsarkov, “Chebyshevskii tsentr mnozhestva, konstanta Yunga i ikh prilozheniya”, UMN, 74:5 (449) (2019), 3–82 | DOI | MR
[5] A. R. Alimov, “Vyborki iz metricheskoi proektsii i strogaya solnechnost mnozhestv s nepreryvnoi metricheskoi proektsiei”, Matem. sb., 208:7 (2017), 3–18 | DOI | MR
[6] A. R. Alimov, “Vyborki iz operatorov nailuchshego i pochti nailuchshego priblizheniya i solnechnost”, Garmonicheskii analiz, teoriya priblizhenii i teoriya chisel, Sbornik statei. K 60-letiyu so dnya rozhdeniya akademika Sergeya Vladimirovicha Konyagina, Tr. MIAN, 303, MAIK “Nauka/Interperiodika”, M., 2018, 17–25 | DOI | MR
[7] A. R. Alimov, “Monotonno lineino svyaznoe mnozhestvo s radialno nepreryvnoi snizu metricheskoi proektsiei yavlyaetsya strogim solntsem”, Sib. matem. zhurn., 58:1 (2017), 16–21 | DOI
[8] I. G. Tsarkov, “Slabo monotonnye mnozhestva i nepreryvnaya vyborka v nesimmetrichnykh prostranstvakh”, Matem. sb., 210:9 (2019), 129–152 | DOI
[9] B. Brosowski, F. Deutsch, “Radial continuity of set-valued metric projections”, J. Approx. Theory, 11:3 (1974), 236–253 | DOI | MR | Zbl
[10] N. V. Nevesenko, “Strogie solntsa i polunepreryvnost snizu metricheskoi proektsii v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 23:4 (1978), 563–572 | MR | Zbl
[11] I. G. Tsarkov, “Nepreryvnost metricheskoi proektsii, strukturnye i approksimativnye svoistva mnozhestv”, Matem. zametki, 47:2 (1990), 137–148 | MR | Zbl
[12] A. R. Alimov, “Vypuklost i monotonnaya lineinaya svyaznost mnozhestv s nepreryvnoi metricheskoi proektsiei v trekhmernykh prostranstvakh”, Tr. IMM UrO RAN, 26, no. 2, 2020, 28–46 | DOI
[13] F. Deutsch, W. Pollul, I. Singer, “On set-valued metric projections, Hahn–Banach extension maps, and spherical image maps”, Duke Math. J., 40:2 (1973), 355–370 | DOI | MR | Zbl
[14] A. R. Alimov, “Geometricheskaya kharakterizatsiya strogikh solnts v prostranstve $\ell^\infty(n)$”, Matem. zametki, 70:1 (2001), 3–11 | DOI | MR | Zbl
[15] A. R. Alimov, “Geometricheskoe stroenie chebyshevskikh mnozhestv v $\ell^\infty(n)$”, Funkts. analiz i ego pril., 39:1 (2005), 1–10 | DOI | MR | Zbl
[16] A. R. Alimov, “Continuity of the metric projection and local solar properties of sets”, Set-Valued Var. Anal., 27:1 (2019), 213–222 | DOI | MR