Completely Decomposable Quotient Divisible Abelian Groups with Isomorphic Endomorphism Semigroups
Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 224-235

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be a class of Abelian groups. A group $A\in\Lambda$ is said to be determined by its endomorphism semigroup $E^\star(A)$ in the class $\Lambda$ if every isomorphism $E^\star(A)\cong E^\star(B)$, where $B\in\Lambda$, implies the isomorphism $A\cong B$. The paper describes those Abelian groups in the class $\mathscr Q\mathscr D_{\mathrm{cd}}$ of completely decomposable quotient divisible Abelian groups which are determined by their endomorphism semigroups in the class $\mathscr Q\mathscr D_{\mathrm{cd}}$.
Mots-clés : quotient divisible Abelian group
Keywords: endomorphism semigroup.
@article{MZM_2020_108_2_a6,
     author = {O. V. Ljubimtsev},
     title = {Completely {Decomposable} {Quotient} {Divisible} {Abelian} {Groups} with {Isomorphic} {Endomorphism} {Semigroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {224--235},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a6/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
TI  - Completely Decomposable Quotient Divisible Abelian Groups with Isomorphic Endomorphism Semigroups
JO  - Matematičeskie zametki
PY  - 2020
SP  - 224
EP  - 235
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a6/
LA  - ru
ID  - MZM_2020_108_2_a6
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%T Completely Decomposable Quotient Divisible Abelian Groups with Isomorphic Endomorphism Semigroups
%J Matematičeskie zametki
%D 2020
%P 224-235
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a6/
%G ru
%F MZM_2020_108_2_a6
O. V. Ljubimtsev. Completely Decomposable Quotient Divisible Abelian Groups with Isomorphic Endomorphism Semigroups. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 224-235. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a6/