Modulus Estimates on Abstract Surfaces over a Domain of Revolution and a Cylindrical Ring
Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 311-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: abstract surface, modulus of a curve family.
@article{MZM_2020_108_2_a15,
     author = {M. V. Tryamkin},
     title = {Modulus {Estimates} on {Abstract} {Surfaces} over a {Domain} of {Revolution} and a {Cylindrical} {Ring}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {311--315},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a15/}
}
TY  - JOUR
AU  - M. V. Tryamkin
TI  - Modulus Estimates on Abstract Surfaces over a Domain of Revolution and a Cylindrical Ring
JO  - Matematičeskie zametki
PY  - 2020
SP  - 311
EP  - 315
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a15/
LA  - ru
ID  - MZM_2020_108_2_a15
ER  - 
%0 Journal Article
%A M. V. Tryamkin
%T Modulus Estimates on Abstract Surfaces over a Domain of Revolution and a Cylindrical Ring
%J Matematičeskie zametki
%D 2020
%P 311-315
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a15/
%G ru
%F MZM_2020_108_2_a15
M. V. Tryamkin. Modulus Estimates on Abstract Surfaces over a Domain of Revolution and a Cylindrical Ring. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 311-315. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a15/

[1] M. V. Tryamkin, Matem. zametki, 107:1 (2020), 149–153 | DOI | Zbl

[2] V. M. Miklyukov, Konformnoe otobrazhenie neregulyarnoi poverkhnosti i ego primeneniya, Izd-vo VolGU, Volgograd, 2005

[3] V. M. Miklyukov, Geometricheskii analiz. Differentsialnye formy, pochti-resheniya, pochti kvazikonformnye otobrazheniya, Izd-vo VolGU, Volgograd, 2007

[4] V. M. Miklyukov, Funktsii vesovykh klassov Soboleva, anizotropnye metriki i vyrozhdayuschiesya kvazikonformnye otobrazheniya, Izd-vo VolGU, Volgograd, 2010

[5] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, Princeton Univ. Press, Princeton, NJ, 2017 | MR | Zbl

[6] S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford Univ. Press, Oxford, 1998 | MR | Zbl

[7] Yu. V. Dymchenko, Matem. zametki, 85:4 (2009), 594–602 | DOI | MR | Zbl

[8] Yu. V. Dymchenko, Analiticheskaya teoriya chisel i teoriya funktsii. 32, Zap. nauchn. sem. POMI, 449, POMI, SPb., 2016, 69–83 | MR