Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_2_a15, author = {M. V. Tryamkin}, title = {Modulus {Estimates} on {Abstract} {Surfaces} over a {Domain} of {Revolution} and a {Cylindrical} {Ring}}, journal = {Matemati\v{c}eskie zametki}, pages = {311--315}, publisher = {mathdoc}, volume = {108}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a15/} }
TY - JOUR AU - M. V. Tryamkin TI - Modulus Estimates on Abstract Surfaces over a Domain of Revolution and a Cylindrical Ring JO - Matematičeskie zametki PY - 2020 SP - 311 EP - 315 VL - 108 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a15/ LA - ru ID - MZM_2020_108_2_a15 ER -
M. V. Tryamkin. Modulus Estimates on Abstract Surfaces over a Domain of Revolution and a Cylindrical Ring. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 311-315. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a15/
[1] M. V. Tryamkin, Matem. zametki, 107:1 (2020), 149–153 | DOI | Zbl
[2] V. M. Miklyukov, Konformnoe otobrazhenie neregulyarnoi poverkhnosti i ego primeneniya, Izd-vo VolGU, Volgograd, 2005
[3] V. M. Miklyukov, Geometricheskii analiz. Differentsialnye formy, pochti-resheniya, pochti kvazikonformnye otobrazheniya, Izd-vo VolGU, Volgograd, 2007
[4] V. M. Miklyukov, Funktsii vesovykh klassov Soboleva, anizotropnye metriki i vyrozhdayuschiesya kvazikonformnye otobrazheniya, Izd-vo VolGU, Volgograd, 2010
[5] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, Princeton Univ. Press, Princeton, NJ, 2017 | MR | Zbl
[6] S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford Univ. Press, Oxford, 1998 | MR | Zbl
[7] Yu. V. Dymchenko, Matem. zametki, 85:4 (2009), 594–602 | DOI | MR | Zbl
[8] Yu. V. Dymchenko, Analiticheskaya teoriya chisel i teoriya funktsii. 32, Zap. nauchn. sem. POMI, 449, POMI, SPb., 2016, 69–83 | MR