A Factorization Problem on a Smooth Two-Dimensional Surface
Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 285-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a continuous complex-valued function $a$ and nonnegative functions $\rho_1$ and $\rho_2$ on a two-dimensional smooth connected closed surface such that $|a|=\rho_1\rho_2$ and the functions $\rho_1$ and $\rho_2$ have no common zeros, it is required to find complex-valued continuous functions $a_1$ and $a_2$ satisfying the conditions $a_1a_2=a$ and $|a_j|=\rho_j$. Necessary and sufficient solvability conditions for this problem are given.
Keywords: closed surface, factorization problem
Mots-clés : Cauchy index.
@article{MZM_2020_108_2_a10,
     author = {A. P. Soldatov},
     title = {A {Factorization} {Problem} on a {Smooth} {Two-Dimensional} {Surface}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {285--290},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a10/}
}
TY  - JOUR
AU  - A. P. Soldatov
TI  - A Factorization Problem on a Smooth Two-Dimensional Surface
JO  - Matematičeskie zametki
PY  - 2020
SP  - 285
EP  - 290
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a10/
LA  - ru
ID  - MZM_2020_108_2_a10
ER  - 
%0 Journal Article
%A A. P. Soldatov
%T A Factorization Problem on a Smooth Two-Dimensional Surface
%J Matematičeskie zametki
%D 2020
%P 285-290
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a10/
%G ru
%F MZM_2020_108_2_a10
A. P. Soldatov. A Factorization Problem on a Smooth Two-Dimensional Surface. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 285-290. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a10/

[1] A. V. Bitsadze, Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966 | MR

[2] A. P. Soldatov, “Zadacha Rimana–Gilberta dlya sistemy Moisila–Teodoresku”, Probl. matem. anal., 239:3 (2019), 129–155 | MR

[3] M. M. Postnikov, Lektsii po geometrii. Semestr IV. Differentsialnaya geometriya, Nauka, M., 1988 | MR