A Factorization Problem on a Smooth Two-Dimensional Surface
Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 285-290
Cet article a éte moissonné depuis la source Math-Net.Ru
Given a continuous complex-valued function $a$ and nonnegative functions $\rho_1$ and $\rho_2$ on a two-dimensional smooth connected closed surface such that $|a|=\rho_1\rho_2$ and the functions $\rho_1$ and $\rho_2$ have no common zeros, it is required to find complex-valued continuous functions $a_1$ and $a_2$ satisfying the conditions $a_1a_2=a$ and $|a_j|=\rho_j$. Necessary and sufficient solvability conditions for this problem are given.
Keywords:
closed surface, factorization problem
Mots-clés : Cauchy index.
Mots-clés : Cauchy index.
@article{MZM_2020_108_2_a10,
author = {A. P. Soldatov},
title = {A {Factorization} {Problem} on a {Smooth} {Two-Dimensional} {Surface}},
journal = {Matemati\v{c}eskie zametki},
pages = {285--290},
year = {2020},
volume = {108},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a10/}
}
A. P. Soldatov. A Factorization Problem on a Smooth Two-Dimensional Surface. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 285-290. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a10/
[1] A. V. Bitsadze, Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966 | MR
[2] A. P. Soldatov, “Zadacha Rimana–Gilberta dlya sistemy Moisila–Teodoresku”, Probl. matem. anal., 239:3 (2019), 129–155 | MR
[3] M. M. Postnikov, Lektsii po geometrii. Semestr IV. Differentsialnaya geometriya, Nauka, M., 1988 | MR