Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_1_a9, author = {T. A. Pushkova and A. M. Sebel'din}, title = {On the {Question} of {Definability} of {Homogeneously} {Decomposable} {Torsion-Free} {Abelian} {Groups} by {Their} {Homomorphism} {Groups} and {Endomorphism} {Rings}}, journal = {Matemati\v{c}eskie zametki}, pages = {130--136}, publisher = {mathdoc}, volume = {108}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a9/} }
TY - JOUR AU - T. A. Pushkova AU - A. M. Sebel'din TI - On the Question of Definability of Homogeneously Decomposable Torsion-Free Abelian Groups by Their Homomorphism Groups and Endomorphism Rings JO - Matematičeskie zametki PY - 2020 SP - 130 EP - 136 VL - 108 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a9/ LA - ru ID - MZM_2020_108_1_a9 ER -
%0 Journal Article %A T. A. Pushkova %A A. M. Sebel'din %T On the Question of Definability of Homogeneously Decomposable Torsion-Free Abelian Groups by Their Homomorphism Groups and Endomorphism Rings %J Matematičeskie zametki %D 2020 %P 130-136 %V 108 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a9/ %G ru %F MZM_2020_108_1_a9
T. A. Pushkova; A. M. Sebel'din. On the Question of Definability of Homogeneously Decomposable Torsion-Free Abelian Groups by Their Homomorphism Groups and Endomorphism Rings. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 130-136. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a9/