On the Question of Definability of Homogeneously Decomposable Torsion-Free Abelian Groups by Their Homomorphism Groups and Endomorphism Rings
Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 130-136

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C$ be an Abelian group. A class $X$ of Abelian groups is called a $_CH $-class (a $_CEH$-class) if, for any groups $A$ and $B$ in the class $X$, the isomorphism of the groups $\operatorname{Hom}(C,A)$ and $\operatorname{Hom}(C,B)$ (the isomorphism of the endomorphism rings $E(A)$ and $E(B)$ and of the groups $\operatorname{Hom}(C,A)$ and $\operatorname{Hom}(C,B)$) implies the isomorphism of the groups $A$ and $B$. In the paper, we study conditions that must be satisfied by a vector group $C$ for some class of homogeneously decomposable torsion-free Abelian groups to be a $_CH$ class (Theorem 1), and also, for some $C$ in the class of vector groups, for some class of homogeneously decomposable torsion-free Abelian groups to be a $_CEH$-class (Theorem 2).
Keywords: homogeneously decomposable torsion-free Abelian group, definability of Abelian groups, group of homomorphisms, endomorphism ring.
@article{MZM_2020_108_1_a9,
     author = {T. A. Pushkova and A. M. Sebel'din},
     title = {On the {Question} of {Definability} of {Homogeneously} {Decomposable} {Torsion-Free} {Abelian} {Groups} by {Their} {Homomorphism} {Groups} and {Endomorphism} {Rings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {130--136},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a9/}
}
TY  - JOUR
AU  - T. A. Pushkova
AU  - A. M. Sebel'din
TI  - On the Question of Definability of Homogeneously Decomposable Torsion-Free Abelian Groups by Their Homomorphism Groups and Endomorphism Rings
JO  - Matematičeskie zametki
PY  - 2020
SP  - 130
EP  - 136
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a9/
LA  - ru
ID  - MZM_2020_108_1_a9
ER  - 
%0 Journal Article
%A T. A. Pushkova
%A A. M. Sebel'din
%T On the Question of Definability of Homogeneously Decomposable Torsion-Free Abelian Groups by Their Homomorphism Groups and Endomorphism Rings
%J Matematičeskie zametki
%D 2020
%P 130-136
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a9/
%G ru
%F MZM_2020_108_1_a9
T. A. Pushkova; A. M. Sebel'din. On the Question of Definability of Homogeneously Decomposable Torsion-Free Abelian Groups by Their Homomorphism Groups and Endomorphism Rings. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 130-136. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a9/