On the Question of Definability of Homogeneously Decomposable Torsion-Free Abelian Groups by Their Homomorphism Groups and Endomorphism Rings
Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 130-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C$ be an Abelian group. A class $X$ of Abelian groups is called a $_CH $-class (a $_CEH$-class) if, for any groups $A$ and $B$ in the class $X$, the isomorphism of the groups $\operatorname{Hom}(C,A)$ and $\operatorname{Hom}(C,B)$ (the isomorphism of the endomorphism rings $E(A)$ and $E(B)$ and of the groups $\operatorname{Hom}(C,A)$ and $\operatorname{Hom}(C,B)$) implies the isomorphism of the groups $A$ and $B$. In the paper, we study conditions that must be satisfied by a vector group $C$ for some class of homogeneously decomposable torsion-free Abelian groups to be a $_CH$ class (Theorem 1), and also, for some $C$ in the class of vector groups, for some class of homogeneously decomposable torsion-free Abelian groups to be a $_CEH$-class (Theorem 2).
Keywords: homogeneously decomposable torsion-free Abelian group, definability of Abelian groups, group of homomorphisms, endomorphism ring.
@article{MZM_2020_108_1_a9,
     author = {T. A. Pushkova and A. M. Sebel'din},
     title = {On the {Question} of {Definability} of {Homogeneously} {Decomposable} {Torsion-Free} {Abelian} {Groups} by {Their} {Homomorphism} {Groups} and {Endomorphism} {Rings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {130--136},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a9/}
}
TY  - JOUR
AU  - T. A. Pushkova
AU  - A. M. Sebel'din
TI  - On the Question of Definability of Homogeneously Decomposable Torsion-Free Abelian Groups by Their Homomorphism Groups and Endomorphism Rings
JO  - Matematičeskie zametki
PY  - 2020
SP  - 130
EP  - 136
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a9/
LA  - ru
ID  - MZM_2020_108_1_a9
ER  - 
%0 Journal Article
%A T. A. Pushkova
%A A. M. Sebel'din
%T On the Question of Definability of Homogeneously Decomposable Torsion-Free Abelian Groups by Their Homomorphism Groups and Endomorphism Rings
%J Matematičeskie zametki
%D 2020
%P 130-136
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a9/
%G ru
%F MZM_2020_108_1_a9
T. A. Pushkova; A. M. Sebel'din. On the Question of Definability of Homogeneously Decomposable Torsion-Free Abelian Groups by Their Homomorphism Groups and Endomorphism Rings. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 130-136. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a9/

[1] L. Fuchs, “Recent results and problems on abelian groups”, 1963 Topics in Abelian Groups, Scott, Foresman and Co., Chicago, IL, 1963, 9–40 | MR

[2] P. Hill, “Two problems of L. Fuchs Concerning Tor and Hom”, J. Algebra, 19:3 (1971), 379–383 | DOI | MR | Zbl

[3] A. M. Sebeldin, Opredelyaemost abelevykh grupp, Palmarium Academic Publ., 2012

[4] R. Baer, “Automorphism rings of primary Abelian operator groups”, Ann. of Math. (2), 44 (1943), 192–227 | DOI | MR | Zbl

[5] I. Kaplansky, “Some results on abelian groups”, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 538–540 | DOI | MR | Zbl

[6] A. M. Sebeldin, “Usloviya izomorfizma vpolne razlozhimykh abelevykh grupp bez krucheniya s izomorfnymi koltsami endomorfizmov”, Matem. zametki, 11:4 (1972), 403–408 | MR | Zbl

[7] T. A. Beregovaya, “Ob opredelyaemosti vpolne razlozhimykh abelevykh grupp bez krucheniya nekotorymi gruppami gomomorfizmov”, Izv. vuzov. Matem., 2009, no. 11, 20–23 | MR | Zbl

[8] T. A. Beregovaya, A. M. Sebeldin, “Opredelyaemost vpolne razlozhimykh abelevykh grupp bez krucheniya gruppami gomomorfizmov”, Matem. zametki, 73:5 (2003), 643–648 | DOI | MR | Zbl

[9] T. A. Pushkova, “Opredelyaemost abelevykh grupp bez krucheniya ranga 1 svoimi koltsami endomorfizmov (polugruppami endomorfizmov) i gruppami gomomorfizmov”, Vestn. NNGU. Matem., 2013, no. 6 (1), 162–164

[10] T. A. Pushkova, A. M. Sebeldin, “Ob opredelyaemosti vpolne razlozhimykh abelevykh grupp bez krucheniya koltsami endomorfizmov i nekotorymi gruppami gomomorfizmov”, Matem. zametki, 101:4 (2017), 576–581 | DOI | MR | Zbl

[11] A. M. Sebeldin, “Isomorphisme naturel des groupes des homomorphismes des groupes abeliens”, Ann. De L'IPGANC. Sér. A, 8 (1982), 155–158

[12] R. B. Warfield, Jr., “Homomorphisms and duality for torsion free groups”, Math. Z., 107:3 (1968), 189–200 | DOI | MR | Zbl

[13] L. Fuks, Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974 | MR | Zbl

[14] K. Kuratovskii, A. Mostovskii, Teoriya mnozhestv, Mir, M., 1970 | MR

[15] L. Fuks, Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977 | MR | Zbl