New Estimate for Kloosterman Sums with Primes
Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 94-101

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an estimate for a Kloosterman sum with primes for an arbitrary modulus $q$ whose length $X$ satisfies the conditions $$ q^{1/2+\varepsilon}\le X\ll q^{3/2}. $$ This estimate refines the results obtained earlier by E. Fouvry, I. E. Shparlinski (2011), and the first author (2018, 2019).
Keywords: Kloosterman sums, prime numbers
Mots-clés : inverse residues.
@article{MZM_2020_108_1_a6,
     author = {M. A. Korolev and M. E. Changa},
     title = {New {Estimate} for {Kloosterman} {Sums} with {Primes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {94--101},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a6/}
}
TY  - JOUR
AU  - M. A. Korolev
AU  - M. E. Changa
TI  - New Estimate for Kloosterman Sums with Primes
JO  - Matematičeskie zametki
PY  - 2020
SP  - 94
EP  - 101
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a6/
LA  - ru
ID  - MZM_2020_108_1_a6
ER  - 
%0 Journal Article
%A M. A. Korolev
%A M. E. Changa
%T New Estimate for Kloosterman Sums with Primes
%J Matematičeskie zametki
%D 2020
%P 94-101
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a6/
%G ru
%F MZM_2020_108_1_a6
M. A. Korolev; M. E. Changa. New Estimate for Kloosterman Sums with Primes. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 94-101. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a6/