Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_1_a10, author = {S. S. Kharibegashvili and O. M. Dzhokhadze}, title = {Solvability of a {Mixed} {Problem} with {Nonlinear} {Boundary} {Condition} for a {One-Dimensional} {Semilinear} {Wave} {Equation}}, journal = {Matemati\v{c}eskie zametki}, pages = {137--152}, publisher = {mathdoc}, volume = {108}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a10/} }
TY - JOUR AU - S. S. Kharibegashvili AU - O. M. Dzhokhadze TI - Solvability of a Mixed Problem with Nonlinear Boundary Condition for a One-Dimensional Semilinear Wave Equation JO - Matematičeskie zametki PY - 2020 SP - 137 EP - 152 VL - 108 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a10/ LA - ru ID - MZM_2020_108_1_a10 ER -
%0 Journal Article %A S. S. Kharibegashvili %A O. M. Dzhokhadze %T Solvability of a Mixed Problem with Nonlinear Boundary Condition for a One-Dimensional Semilinear Wave Equation %J Matematičeskie zametki %D 2020 %P 137-152 %V 108 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a10/ %G ru %F MZM_2020_108_1_a10
S. S. Kharibegashvili; O. M. Dzhokhadze. Solvability of a Mixed Problem with Nonlinear Boundary Condition for a One-Dimensional Semilinear Wave Equation. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 137-152. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a10/
[1] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl
[2] S. S. Kharibegashvili, O. M. Dzhokhadze, “O globalnykh i vzryvnykh resheniyakh smeshannoi zadachi s nelineinym granichnym usloviem dlya odnomernogo polulineinogo volnovogo uravneniya”, Matem. sb., 205:4 (2014), 121–148 | DOI | MR | Zbl
[3] S. S. Kharibegashvili, N. N. Shavlakadze, O. M. Jokhadze, “On the solvability of a mixed problem with a nonlinear boundary condition for a one-dimensional semilinear wave equation”, J. Contemp. Math. Anal., 53:5 (2018), 247–259 | MR | Zbl
[4] V. B. Kolmanovskii, V. R. Nosov, Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981 | MR
[5] S. A. Rodriguez, J.-M. Dion, L. Dugard, “Stability of neutral time delay systems: a survey of some results”, Advances in Automatic Control, Kluwer Internat. Ser. Engrg. Comput. Sci., 754, Kluwer Acad. Publ., Boston, MA, 2003, 315–335 | MR
[6] E. Vitillaro, “Global existence for the wave equation with nonlinear boundary damping and source term”, J. Differential Equations, 186:1 (2002), 259–298 | DOI | MR
[7] M. M. Cavalcanti, V. N. Domingos Cavalcanti, P. Martinez, “Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term”, J. Differential Equations, 203 (2004), 119–158 | DOI | MR | Zbl
[8] H. Zhang, Q. Hu, “Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition”, Commun. Pure Appl. Anal., 4:4 (2005), 861–869 | DOI | MR | Zbl
[9] L. Bociu, I. Lasiecka, “Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping”, J. Differential Equations, 249:3 (2010), 654–683 | DOI | MR | Zbl
[10] A. Nowakowski, “Solvability and stability of a semilinear wave equation with nonlinear boundary conditions”, Nonlinear Anal., 73:6 (2010), 1495–1514 | DOI | MR | Zbl
[11] A. V. Bitsadze, Uravneniya matematicheskoi fiziki, Nauka, M., 1982 | MR
[12] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl
[13] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1993 | MR
[14] E. Mitidieri, S. I. Pokhozhaev, Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, Nauka, MAIK «Nauka/Interperiodika», M., 2001 | MR | Zbl