Solvability of a Mixed Problem with Nonlinear Boundary Condition for a One-Dimensional Semilinear Wave Equation
Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 137-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a one-dimensional semilinear wave equation, a mixed problem with nonlinear boundary condition is considered. The uniqueness and the local and global solvability of the problem under consideration are studied depending on the type of nonlinearities in the equation and in the boundary conditions. The cases of nonexistence of a solution not only globally but even locally are considered, as well as the case where this problem has a blow-up solution.
Keywords: semilinear wave equation, nonlinear boundary condition, a priori estimate, local and global solvability, nonexistence of a solution, blow-up solutions.
@article{MZM_2020_108_1_a10,
     author = {S. S. Kharibegashvili and O. M. Dzhokhadze},
     title = {Solvability of a {Mixed} {Problem} with {Nonlinear} {Boundary} {Condition} for a {One-Dimensional} {Semilinear} {Wave} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {137--152},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a10/}
}
TY  - JOUR
AU  - S. S. Kharibegashvili
AU  - O. M. Dzhokhadze
TI  - Solvability of a Mixed Problem with Nonlinear Boundary Condition for a One-Dimensional Semilinear Wave Equation
JO  - Matematičeskie zametki
PY  - 2020
SP  - 137
EP  - 152
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a10/
LA  - ru
ID  - MZM_2020_108_1_a10
ER  - 
%0 Journal Article
%A S. S. Kharibegashvili
%A O. M. Dzhokhadze
%T Solvability of a Mixed Problem with Nonlinear Boundary Condition for a One-Dimensional Semilinear Wave Equation
%J Matematičeskie zametki
%D 2020
%P 137-152
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a10/
%G ru
%F MZM_2020_108_1_a10
S. S. Kharibegashvili; O. M. Dzhokhadze. Solvability of a Mixed Problem with Nonlinear Boundary Condition for a One-Dimensional Semilinear Wave Equation. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 137-152. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a10/

[1] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[2] S. S. Kharibegashvili, O. M. Dzhokhadze, “O globalnykh i vzryvnykh resheniyakh smeshannoi zadachi s nelineinym granichnym usloviem dlya odnomernogo polulineinogo volnovogo uravneniya”, Matem. sb., 205:4 (2014), 121–148 | DOI | MR | Zbl

[3] S. S. Kharibegashvili, N. N. Shavlakadze, O. M. Jokhadze, “On the solvability of a mixed problem with a nonlinear boundary condition for a one-dimensional semilinear wave equation”, J. Contemp. Math. Anal., 53:5 (2018), 247–259 | MR | Zbl

[4] V. B. Kolmanovskii, V. R. Nosov, Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981 | MR

[5] S. A. Rodriguez, J.-M. Dion, L. Dugard, “Stability of neutral time delay systems: a survey of some results”, Advances in Automatic Control, Kluwer Internat. Ser. Engrg. Comput. Sci., 754, Kluwer Acad. Publ., Boston, MA, 2003, 315–335 | MR

[6] E. Vitillaro, “Global existence for the wave equation with nonlinear boundary damping and source term”, J. Differential Equations, 186:1 (2002), 259–298 | DOI | MR

[7] M. M. Cavalcanti, V. N. Domingos Cavalcanti, P. Martinez, “Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term”, J. Differential Equations, 203 (2004), 119–158 | DOI | MR | Zbl

[8] H. Zhang, Q. Hu, “Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition”, Commun. Pure Appl. Anal., 4:4 (2005), 861–869 | DOI | MR | Zbl

[9] L. Bociu, I. Lasiecka, “Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping”, J. Differential Equations, 249:3 (2010), 654–683 | DOI | MR | Zbl

[10] A. Nowakowski, “Solvability and stability of a semilinear wave equation with nonlinear boundary conditions”, Nonlinear Anal., 73:6 (2010), 1495–1514 | DOI | MR | Zbl

[11] A. V. Bitsadze, Uravneniya matematicheskoi fiziki, Nauka, M., 1982 | MR

[12] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[13] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1993 | MR

[14] E. Mitidieri, S. I. Pokhozhaev, Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, Nauka, MAIK «Nauka/Interperiodika», M., 2001 | MR | Zbl