Sharpening an Estimate of the Size
Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 902-905.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite set $A=\{a_1\dotsb$ is said to be convex if the sequence $(a_i-a_{i-1})_{i=2}^n$ is strictly increasing. Using an estimate of the additive energy of convex sets, one can estimate the size of the sumset as $|A+A|\gtrsim|A|^{102/65}$, which slightly sharpens Shkredov's latest result $|A+A|\gtrsim|A|^{58/37}$.
Keywords: additive combinatorics, sumset, convex sets, convex sequences.
@article{MZM_2020_107_6_a9,
     author = {K. I. Olmezov},
     title = {Sharpening an {Estimate} of the {Size}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {902--905},
     publisher = {mathdoc},
     volume = {107},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a9/}
}
TY  - JOUR
AU  - K. I. Olmezov
TI  - Sharpening an Estimate of the Size
JO  - Matematičeskie zametki
PY  - 2020
SP  - 902
EP  - 905
VL  - 107
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a9/
LA  - ru
ID  - MZM_2020_107_6_a9
ER  - 
%0 Journal Article
%A K. I. Olmezov
%T Sharpening an Estimate of the Size
%J Matematičeskie zametki
%D 2020
%P 902-905
%V 107
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a9/
%G ru
%F MZM_2020_107_6_a9
K. I. Olmezov. Sharpening an Estimate of the Size. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 902-905. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a9/

[1] N. Hegyvári, “On consecutive sums in sequences”, Acta Math. Hungar., 48 (1986), 193–200 | DOI | MR | Zbl

[2] I. D. Shkredov, “O summakh mnozhestv Semeredi–Trottera”, Izbrannye voprosy matematiki i mekhaniki, Tr. MIAN, 289, MAIK «Nauka/Interperiodika», M., 2015, 318–327 | DOI

[3] A. Iosevich, S. V. Konyagin, M. Rudnev, V. Ten, “On combinatorial complexity of convex sequences”, Discrete Comput. Geom., 35 (2006), 143–158 | DOI | MR | Zbl

[4] T. Schoen, I. D. Shkredov, “On sumsets of convex sets”, Comb. Probab. Comput., 20:5 (2011), 793–798 | DOI | MR | Zbl

[5] I. D. Shkredov, “Neskolko novykh rezultatov o starshikh energiyakh”, Tr. MMO, 74, no. 1, MTsNMO, M., 2013, 35–73 | MR | Zbl

[6] M. Z. Garaev, “O nizhnikh otsenkakh $L_1$-normy nekotorykh eksponentsialnykh summ”, Matem. zametki, 68:6 (2000), 842–850 | DOI | MR | Zbl

[7] T. Tao, V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl