On Simple
Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 855-864.

Voir la notice de l'article provenant de la source Math-Net.Ru

V. I. Arnold has classified simple (i.e., having no moduli for the classification) singularities (function germs), and also simple boundary singularities: function germs invariant with respect to the action $\sigma(x_1;y_1,\dots,y_n)=(-x_1;y_1,\dots,y_n)$ of the group $\mathbb{Z}_2$. In particular, it was shown that a function germ (a boundary singularity germ) is simple if and only if the intersection form (respectively, the restriction of the intersection form to the subspace of anti-invariant cycles) of a germ in $3+4s$ variables stable equivalent to the one under consideration is negative definite and if and only if the (equivariant) monodromy group on the corresponding subspace is finite. We formulate and prove analogs of these statements for function germs invariant with respect to an arbitrary action of the group $\mathbb{Z}_2$, and also for corner singularities.
Mots-clés : group actions
Keywords: invariant germs, simple singularities.
@article{MZM_2020_107_6_a4,
     author = {S. M. Gusein-Zade and A.-M. Ya. Raukh},
     title = {On {Simple}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {855--864},
     publisher = {mathdoc},
     volume = {107},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a4/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
AU  - A.-M. Ya. Raukh
TI  - On Simple
JO  - Matematičeskie zametki
PY  - 2020
SP  - 855
EP  - 864
VL  - 107
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a4/
LA  - ru
ID  - MZM_2020_107_6_a4
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%A A.-M. Ya. Raukh
%T On Simple
%J Matematičeskie zametki
%D 2020
%P 855-864
%V 107
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a4/
%G ru
%F MZM_2020_107_6_a4
S. M. Gusein-Zade; A.-M. Ya. Raukh. On Simple. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 855-864. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a4/

[1] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Tom 1. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[2] V. I. Arnold, “Normalnye formy funktsii vblizi vyrozhdennykh kriticheskikh tochek, gruppy Veilya $A_k$, $D_k$, $E_k$ i lagranzhevy osobennosti”, Funkts. analiz i ego pril., 6:4 (1972), 3–25 | MR | Zbl

[3] V. I. Arnold, “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, UMN, 33:5 (203) (1978), 91–105 | MR | Zbl

[4] P. Slodowy, “Einige Bemerkungen zur Entfaltung symmetrischer Funktionen”, Math. Z., 158:2 (1978), 157–170 | DOI | MR | Zbl

[5] D. Siersma, “Singularities of functions on boundaries, corners, etc.”, Quart. J. Math. Oxford Ser. (2), 32:125 (1981), 119–127 | DOI | MR | Zbl

[6] A. M. Gabrielov, “Matritsy peresechenii dlya nekotorykh osobennostei”, Funkts. analiz i ego pril., 7:3 (1973), 18–32 | MR | Zbl

[7] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Tom 2. Monodromiya i asimptotiki integralov, Nauka, M., 1984 | MR

[8] S. M. Gusein-Zade, “Matritsy peresechenii dlya nekotorykh osobennostei funktsii dvukh peremennykh”, Funkts. analiz i ego pril., 8:1 (1974), 11–15 | Zbl

[9] C. T. C. Wall, “A note on symmetry of singularities”, Bull. London Math. Soc., 12:3 (1980), 169–175 | DOI | MR | Zbl