$\mathbb T$-Spaces of
Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 922-933
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, we continue the study of the relatively free Grassmann
algebra $\mathbb F^{(3)}$
without unit over an infinite field of characteristic $2$,
which was initiated in previous works of the author.
The main attention is paid
here to the relationship between the $\mathbb T$-spaces of
$n$-words, i.e.,
the
$\mathbb T$-spaces generated by all monomials in
$\mathbb F^{(3)}$
containing each of
their variables with multiplicity $n$.
The results of this note will enable one to form
a more complete picture of possible inclusions between the
$\mathbb T$-spaces of
$r$- and
$n$-words for
$r>n$.
Keywords:
$\mathbb T$-space, relatively free Grassmann algebra,
$n$-word.
@article{MZM_2020_107_6_a11,
author = {L. M. Tsybulya},
title = {$\mathbb T${-Spaces} of},
journal = {Matemati\v{c}eskie zametki},
pages = {922--933},
publisher = {mathdoc},
volume = {107},
number = {6},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a11/}
}
L. M. Tsybulya. $\mathbb T$-Spaces of. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 922-933. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a11/