$\mathbb T$-Spaces of
Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 922-933

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we continue the study of the relatively free Grassmann algebra $\mathbb F^{(3)}$ without unit over an infinite field of characteristic $2$, which was initiated in previous works of the author. The main attention is paid here to the relationship between the $\mathbb T$-spaces of $n$-words, i.e., the $\mathbb T$-spaces generated by all monomials in $\mathbb F^{(3)}$ containing each of their variables with multiplicity $n$. The results of this note will enable one to form a more complete picture of possible inclusions between the $\mathbb T$-spaces of $r$- and $n$-words for $r>n$.
Keywords: $\mathbb T$-space, relatively free Grassmann algebra, $n$-word.
@article{MZM_2020_107_6_a11,
     author = {L. M. Tsybulya},
     title = {$\mathbb T${-Spaces} of},
     journal = {Matemati\v{c}eskie zametki},
     pages = {922--933},
     publisher = {mathdoc},
     volume = {107},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a11/}
}
TY  - JOUR
AU  - L. M. Tsybulya
TI  - $\mathbb T$-Spaces of
JO  - Matematičeskie zametki
PY  - 2020
SP  - 922
EP  - 933
VL  - 107
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a11/
LA  - ru
ID  - MZM_2020_107_6_a11
ER  - 
%0 Journal Article
%A L. M. Tsybulya
%T $\mathbb T$-Spaces of
%J Matematičeskie zametki
%D 2020
%P 922-933
%V 107
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a11/
%G ru
%F MZM_2020_107_6_a11
L. M. Tsybulya. $\mathbb T$-Spaces of. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 922-933. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a11/