Exact Constants in Telyakovskii's Two-Sided Estimate
Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 906-921.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the sum of the sine series $g(\mathbf b,x)=\sum_{k=1}^\infty b_k\sin kx$ whose coefficients constitute a convex sequence $\mathbf b$ is positive on the interval $(0,\pi)$. To estimate its values in a neighborhood of zero, Telyakovskii used the piecewise continuous function $$ \sigma(\mathbf b,x)=\frac1{m(x)}\sum_{k=1}^{m(x)-1}k^2(b_k-b_{k+1}),\qquad m(x)=\biggl[\frac\pi x\biggr]. $$ He showed that the difference $g(\mathbf b,x)-(b_{m(x)}/2)\operatorname{cot}(x/2)$ in a neighborhood of zero admits a two-sided estimate in terms of the function $\sigma(\mathbf b,x)$ with absolute constants. The exact values of these constants for the class of convex sequences $\mathbf b$ are obtained in this paper.
Keywords: sine series with monotone coefficients, convex sequence, slowly varying sequence.
@article{MZM_2020_107_6_a10,
     author = {A. P. Solodov},
     title = {Exact {Constants} in {Telyakovskii's} {Two-Sided} {Estimate}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {906--921},
     publisher = {mathdoc},
     volume = {107},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a10/}
}
TY  - JOUR
AU  - A. P. Solodov
TI  - Exact Constants in Telyakovskii's Two-Sided Estimate
JO  - Matematičeskie zametki
PY  - 2020
SP  - 906
EP  - 921
VL  - 107
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a10/
LA  - ru
ID  - MZM_2020_107_6_a10
ER  - 
%0 Journal Article
%A A. P. Solodov
%T Exact Constants in Telyakovskii's Two-Sided Estimate
%J Matematičeskie zametki
%D 2020
%P 906-921
%V 107
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a10/
%G ru
%F MZM_2020_107_6_a10
A. P. Solodov. Exact Constants in Telyakovskii's Two-Sided Estimate. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 906-921. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a10/

[1] S. A. Telyakovskiĭ, “On the behavior near the origin of the sine series with convex coefficients”, Publ. Inst. Math. (Beograd) (N.S.), 58:72 (1995), 43–50 | MR | Zbl

[2] S. A. Telyakovskii, “K voprosu o povedenii ryadov po sinusam vblizi nulya”, Makedon. Akad. Nauk. Umet. Oddel. Mat.-Tehn. Nauk. Prilozi, 21 (2002), 47–54 | MR

[3] S. Aljančić, R. Bojanić, M. Tomić, “Sur le comportement asymptotique au voisinage de zéro des séries trigonométriques de sinus à coefficients monotones”, Acad. Serbe Sci. Publ. Inst. Math., 10 (1956), 101–120 | MR | Zbl

[4] A. Zigmund, Trigonometricheskie ryady, Mir, M., 1965 | MR | Zbl | Zbl

[5] E. Seneta, Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[6] S. A. Telyakovskii, “O povedenii ryadov po sinusam s vypuklymi koeffitsientami vblizi nulya”, Dokl. AN, 357:4 (1997), 462–463

[7] A. Yu. Popov, “Otsenki summ ryadov po sinusam s monotonnymi koeffitsientami nekotorykh klassov”, Matem. zametki, 74:6 (2003), 877–888 | DOI | MR | Zbl

[8] A. P. Solodov, “Tochnaya otsenka snizu summy ryada po sinusam s vypuklymi koeffitsientami”, Matem. sb., 207:12 (2016), 124–158 | DOI | MR | Zbl