The General Solution of the Eisenhart Equation
Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 803-816.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution of the Eisenhart equation for pseudo-Riemannian manifolds $(M^n,g)$ of arbitrary signature and any dimension is obtained. Thereby, pseudo-Riemannian $h$-spaces (i.e., spaces admitting nontrivial solutions $h\ne cg$ of the Eisenhart equation) of all possible types determined by the Segrè characteristic $\chi$ of the bilinear form $h$ are found. Necessary and sufficient conditions for the existence of an infinitesimal projective transformation in $(M^n,g)$ are given. The curvature $2$-form of a (rigid) $h$-space of type $\chi=\{r_1,\dots,r_k\}$ is calculated and necessary and sufficient conditions for this space to have constant curvature are obtained.
Keywords: Eisenhart equation, $h$-space, projective motion, curvature.
@article{MZM_2020_107_6_a0,
     author = {A. V. Aminova and M. N. Sabitova},
     title = {The {General} {Solution} of the {Eisenhart} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--816},
     publisher = {mathdoc},
     volume = {107},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a0/}
}
TY  - JOUR
AU  - A. V. Aminova
AU  - M. N. Sabitova
TI  - The General Solution of the Eisenhart Equation
JO  - Matematičeskie zametki
PY  - 2020
SP  - 803
EP  - 816
VL  - 107
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a0/
LA  - ru
ID  - MZM_2020_107_6_a0
ER  - 
%0 Journal Article
%A A. V. Aminova
%A M. N. Sabitova
%T The General Solution of the Eisenhart Equation
%J Matematičeskie zametki
%D 2020
%P 803-816
%V 107
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a0/
%G ru
%F MZM_2020_107_6_a0
A. V. Aminova; M. N. Sabitova. The General Solution of the Eisenhart Equation. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 803-816. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a0/

[1] A. V. Aminova, Proektivnye preobrazovaniya psevdorimanovykh mnogoobrazii, Yanus-K, M., 2003

[2] A. V. Aminova, N. A.-M. Aminov, “Proektivnaya geometriya sistem differentsialnykh uravnenii vtorogo poryadka”, Matem. sb., 197:7 (2006), 3–28 | DOI | MR | Zbl

[3] A. V. Aminova, N. A.-M. Aminov, “Proektivno-geometricheskaya teoriya sistem differentsialnykh uravnenii vtorogo poryadka: teoremy vypryamleniya i simmetrii”, Matem. sb., 201:5 (2010), 3–16 | DOI | MR | Zbl

[4] A. V. Aminova, “Psevdorimanovy mnogoobraziya s obschimi geodezicheskimi”, UMN, 48:2 (290) (1993), 107–164 | MR | Zbl

[5] A. V. Aminova, “Algebry Li infinitezimalnykh proektivnykh preobrazovanii lorentsevykh mnogoobrazii”, UMN, 50:1 (301) (1995), 69–142 | MR | Zbl

[6] A. V. Aminova, “Ob integrirovanii kovariantnogo differentsialnogo uravneniya pervogo poryadka i geodezicheskikh otobrazheniyakh rimanovykh prostranstv proizvolnoi signatury i razmernosti”, Izv. vuzov. Matem., 1988, no. 1, 3–13 | MR | Zbl

[7] A. V. Aminova, M. N. Sabitova, “On curvature structure of pseudo-Riemannian manifolds admitting infinitesimal projective transformations”, International Conference on Algebra, Analysis and Geometry, Abstracts, Kazan Univ. Press, Kazan, 2016, 40