Uniformization of Equations with Bessel-Type Boundary Degeneration and Semiclassical Asymptotics
Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 780-786.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: wave equation, degeneration, semiclassical asymptotics, uniformization, symplectic reduction, canonical operator.
@article{MZM_2020_107_5_a9,
     author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii},
     title = {Uniformization of {Equations} with {Bessel-Type} {Boundary} {Degeneration} and {Semiclassical} {Asymptotics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {780--786},
     publisher = {mathdoc},
     volume = {107},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a9/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
TI  - Uniformization of Equations with Bessel-Type Boundary Degeneration and Semiclassical Asymptotics
JO  - Matematičeskie zametki
PY  - 2020
SP  - 780
EP  - 786
VL  - 107
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a9/
LA  - ru
ID  - MZM_2020_107_5_a9
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%T Uniformization of Equations with Bessel-Type Boundary Degeneration and Semiclassical Asymptotics
%J Matematičeskie zametki
%D 2020
%P 780-786
%V 107
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a9/
%G ru
%F MZM_2020_107_5_a9
S. Yu. Dobrokhotov; V. E. Nazaikinskii. Uniformization of Equations with Bessel-Type Boundary Degeneration and Semiclassical Asymptotics. Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 780-786. http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a9/

[1] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, Interscience Publ., New York, 1958 | MR

[2] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF, Nizhnii Novgorod, 1996

[3] C. C. Mei, The Applied Dynamics of Ocean Surface Waves, World Sci., Singapore, 1989 | Zbl

[4] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[5] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[6] T. Vukašinac, P. Zhevandrov, Russ. J. Math. Phys., 9:3 (2002), 371–381 | MR

[7] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, Matem. zametki, 104:4 (2018), 483–504 | DOI

[8] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. A. Tolchennikov, Matem. zametki, 101:5 (2017), 700–715 | DOI | MR

[9] V. E. Nazaikinskii, Matem. zametki, 92:1 (2012), 153–156 | DOI | MR | Zbl

[10] V. E. Nazaikinskii, Matem. zametki, 96:2 (2014), 261–276 | DOI | MR | Zbl

[11] Zh. Lere, L. Gording, T. Kotake, Zadacha Koshi, Mir, M., 1967 | Zbl

[12] O. A. Oleinik, E. V. Radkevich, Itogi nauki. Ser. Matematika. Mat. anal. 1969, VINITI, M., 1971, 7–252 | MR | Zbl

[13] J. Lott, Math. Ann., 316:4 (2000), 617–657 | DOI | MR

[14] S. Khelgason, Gruppy i geometricheskii analiz, Mir, M., 1987 | MR | Zbl

[15] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl

[16] J. Marsden, A. Weinstein, Rep. Math. Phys., 5:1 (1974), 121–130 | DOI | MR

[17] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, M., 2002 | MR

[18] V. I. Arnold, Funkts. analiz i ego pril., 1:1 (1967), 1–14 | MR | Zbl

[19] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, Izv. RAN. Ser. matem., 81:2 (2017), 53–96 | DOI | MR