Residual Nilpotence of Groups with One Defining Relation
Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 752-759.

Voir la notice de l'article provenant de la source Math-Net.Ru

All groups in the family of Baumslag–Solitar groups (i.e., groups of the form $G(m,n)=\langle a, b; \,a^{-1}b^ma=b^n \rangle$, where $m$ and $n$ are nonzero integers) for which the residual nilpotence condition holds if and only if the residual $p$-finiteness condition holds for some prime number $p$ are described. It has turned out, in particular, that the group $G(p^r,-p^r)$, where $p$ is an odd prime and $r\ge1$, is residually nilpotent, but it is residually $q$-finite for no prime $q$. Thus, an answer to the existence problem for noncyclic one-relator groups possessing such a property (formulated by McCarron in his 1996 paper) is obtained. A simple proof of the statement that an arbitrary residually nilpotent noncyclic one-relator group which has elements of finite order is residual $p$-finite for some prime $p$, which was announced in the same paper of McCarron, is also given.
Keywords: residual nilpotence, residual $p$-finiteness, one-relator groups.
@article{MZM_2020_107_5_a6,
     author = {D. I. Moldavanskii},
     title = {Residual {Nilpotence} of {Groups} with {One} {Defining} {Relation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {752--759},
     publisher = {mathdoc},
     volume = {107},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a6/}
}
TY  - JOUR
AU  - D. I. Moldavanskii
TI  - Residual Nilpotence of Groups with One Defining Relation
JO  - Matematičeskie zametki
PY  - 2020
SP  - 752
EP  - 759
VL  - 107
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a6/
LA  - ru
ID  - MZM_2020_107_5_a6
ER  - 
%0 Journal Article
%A D. I. Moldavanskii
%T Residual Nilpotence of Groups with One Defining Relation
%J Matematičeskie zametki
%D 2020
%P 752-759
%V 107
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a6/
%G ru
%F MZM_2020_107_5_a6
D. I. Moldavanskii. Residual Nilpotence of Groups with One Defining Relation. Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 752-759. http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a6/

[1] A. I. Maltsev, “Obobschenno nilpotentnye algebry i ikh prisoedinennye gruppy”, Matem. sb., 25 (67):3 (1949), 347–366 | MR | Zbl

[2] E. A. Ivanova, “Approksimiruemost nilpotentnymi gruppami svobodnogo proizvedeniya dvukh grupp s ob'edinennymi konechnymi podgruppami”, Vestn. Ivanovskogo gos. un-a. Ser.: Biologiya, Khimiya, Fizika, Matematika, 2004, no. 3, 120–125

[3] D. N. Azarov, “O nilpotentnoi approksimiruemosti svobodnykh proizvedenii svobodnykh grupp s tsiklicheskim ob'edineniem”, Matem. zametki, 64:1 (1998), 3–8 | DOI | MR | Zbl

[4] E. D. Loginova, “Finitnaya approksimiruemost svobodnogo proizvedeniya dvukh grupp s kommutiruyuschimi podgruppami”, Sib. matem. zhurn., 40:2 (1999), 395–407 | MR | Zbl

[5] J. McCarron, “Residually nilpotent one-relator groups with nontrivial centre”, Proc. Amer. Math. Soc., 124 (1996), 1–5 | DOI | MR

[6] G. Baumslag, D. Solitar, “Some two-generator one-relator non-Hopfian groups”, Bull. Amer. Math. Soc., 68 (1962), 199–201 | DOI | MR

[7] S. Meskin, “Nonresidually finite one-relator groups”, Trans. Amer. Math. Soc., 164 (1972), 105–114 | DOI | MR

[8] D. I. Moldavanskii, “Approksimiruemost konechnymi $p$-gruppami HNN-rasshirenii”, Vestn. Ivanovskogo gos. un-a. Ser.: Biologiya, Khimiya, Fizika, Matematika, 2000, no. 3, 129–140

[9] D. Moldavanskii, “On the residual properties of Baumslag–Solitar groups”, Comm. Algebra, 46:9 (2018), 3766–3778 | DOI | MR

[10] A. Karrass, W. Magnus, D. Solitar, “Elements of finite order in groups with a single defining Relation”, Comm. Pure Appl. Math., 13 (1960), 57–66 | DOI | MR

[11] V. Magnus, A. Karrass, D. Soliter, Kombinatornaya teoriya grupp. Predstavlenie grupp v terminakh obrazuyuschikh i sootnoshenii, Nauka, M., 1974 | MR | Zbl