Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_5_a5, author = {A. S. Migaeva and A. V. Pereskokov}, title = {Asymptotics of the {Spectrum} of the {Hydrogen} {Atom} in {Orthogonal} {Electric} and {Magnetic} {Fields} near the {Lower} {Boundaries} of {Spectral} {Clusters}}, journal = {Matemati\v{c}eskie zametki}, pages = {734--751}, publisher = {mathdoc}, volume = {107}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a5/} }
TY - JOUR AU - A. S. Migaeva AU - A. V. Pereskokov TI - Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields near the Lower Boundaries of Spectral Clusters JO - Matematičeskie zametki PY - 2020 SP - 734 EP - 751 VL - 107 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a5/ LA - ru ID - MZM_2020_107_5_a5 ER -
%0 Journal Article %A A. S. Migaeva %A A. V. Pereskokov %T Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields near the Lower Boundaries of Spectral Clusters %J Matematičeskie zametki %D 2020 %P 734-751 %V 107 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a5/ %G ru %F MZM_2020_107_5_a5
A. S. Migaeva; A. V. Pereskokov. Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields near the Lower Boundaries of Spectral Clusters. Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 734-751. http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a5/
[1] M. V. Karasev, E. M. Novikova, “Predstavlenie tochnykh i kvaziklassicheskikh sobstvennykh funktsii cherez kogerentnye sostoyaniya. Atom vodoroda v magnitnom pole”, TMF, 108:3 (1996), 339–387 | DOI | MR | Zbl
[2] M. V. Karasev, E. M. Novikova, “Algebra s polinomialnymi kommutatsionnymi sootnosheniyami dlya effekta Zeemana–Shtarka v atome vodoroda”, TMF, 142:3 (2005), 530–555 | DOI | MR | Zbl
[3] A. V. Pereskokov, “Asimptotika spektra atoma vodoroda v magnitnom pole vblizi nizhnikh granits spektralnykh klasterov”, Tr. MMO, 73, no. 2, MTsNMO, M., 2012, 277–325 | MR | Zbl
[4] M. Karasev, E. Novikova, “Algebras with polynomial commutation relations for a quantum particle in electric and magnetic fields”, Quantum Algebras and Poisson Geometry in Mathematical Physics, Amer. Math. Soc. Trans. Ser. 2, 216, Amer. Math. Soc., Providence, RI, 2005, 19–135 | MR
[5] M. Karasev, “Birkhoff resonances and quantum ray method”, Proceedings of the International Seminar Days on Diffraction, 2004 (Saint Petersburg, Russia, 2004), 114–126 | DOI
[6] A. V. Pereskokov, “Asimptotika spektra i kvantovykh srednikh vozmuschennogo rezonansnogo ostsillyatora vblizi granits spektralnykh klasterov”, Izv. RAN. Ser. matem., 77:1 (2013), 165–210 | DOI | MR | Zbl
[7] A. V. Pereskokov, “New type of semiclassical asymptotics of eigenstates near the boundaries of spectral clusters for Schrödinger-type operators”, 2016 Days on Diffraction (St. Petersburg, 2016), 323–326 | DOI
[8] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972 | MR | Zbl
[9] S. Yu. Dobrokhotov, V. P. Maslov, “Nekotorye prilozheniya teorii kompleksnogo rostka k uravneniyam s malym parametrom”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 5, VINITI, M., 1975, 141–211 | MR | Zbl
[10] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii. Edinaya teoriya, osnovannaya na analize osobennostei, Nevskii Dialekt, SPb., 2002
[11] M. Karasev, E. Novikova, “Non-Lie permutation relations, coherent states, and quantum embedding”, Coherent Transform, Quantization, and Poisson Geometry, Amer. Math. Soc. Trans. Ser. 2, 187, Amer. Math. Soc., Providence, RI, 1998, 1–202 | MR
[12] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1974 | MR | Zbl
[13] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl
[14] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl