Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields near the Lower Boundaries of Spectral Clusters
Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 734-751.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Zeeman–Stark effect for the hydrogen atom in an electromagnetic field is considered by using irreducible representations of an algebra with Karasev–Novikova quadratic commutation relations. The asymptotics of the series of eigenvalues and asymptotic eigenfunctions are obtained near the lower boundaries of the resonance spectral clusters, which are formed near the energy levels of the unperturbed hydrogen atom.
Keywords: spectral cluster, quantum averaging method, WKB-approximation, coherent transformation.
@article{MZM_2020_107_5_a5,
     author = {A. S. Migaeva and A. V. Pereskokov},
     title = {Asymptotics of the {Spectrum} of the {Hydrogen} {Atom} in {Orthogonal} {Electric} and {Magnetic} {Fields} near the {Lower} {Boundaries} of {Spectral} {Clusters}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {734--751},
     publisher = {mathdoc},
     volume = {107},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a5/}
}
TY  - JOUR
AU  - A. S. Migaeva
AU  - A. V. Pereskokov
TI  - Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields near the Lower Boundaries of Spectral Clusters
JO  - Matematičeskie zametki
PY  - 2020
SP  - 734
EP  - 751
VL  - 107
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a5/
LA  - ru
ID  - MZM_2020_107_5_a5
ER  - 
%0 Journal Article
%A A. S. Migaeva
%A A. V. Pereskokov
%T Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields near the Lower Boundaries of Spectral Clusters
%J Matematičeskie zametki
%D 2020
%P 734-751
%V 107
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a5/
%G ru
%F MZM_2020_107_5_a5
A. S. Migaeva; A. V. Pereskokov. Asymptotics of the Spectrum of the Hydrogen Atom in Orthogonal Electric and Magnetic Fields near the Lower Boundaries of Spectral Clusters. Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 734-751. http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a5/

[1] M. V. Karasev, E. M. Novikova, “Predstavlenie tochnykh i kvaziklassicheskikh sobstvennykh funktsii cherez kogerentnye sostoyaniya. Atom vodoroda v magnitnom pole”, TMF, 108:3 (1996), 339–387 | DOI | MR | Zbl

[2] M. V. Karasev, E. M. Novikova, “Algebra s polinomialnymi kommutatsionnymi sootnosheniyami dlya effekta Zeemana–Shtarka v atome vodoroda”, TMF, 142:3 (2005), 530–555 | DOI | MR | Zbl

[3] A. V. Pereskokov, “Asimptotika spektra atoma vodoroda v magnitnom pole vblizi nizhnikh granits spektralnykh klasterov”, Tr. MMO, 73, no. 2, MTsNMO, M., 2012, 277–325 | MR | Zbl

[4] M. Karasev, E. Novikova, “Algebras with polynomial commutation relations for a quantum particle in electric and magnetic fields”, Quantum Algebras and Poisson Geometry in Mathematical Physics, Amer. Math. Soc. Trans. Ser. 2, 216, Amer. Math. Soc., Providence, RI, 2005, 19–135 | MR

[5] M. Karasev, “Birkhoff resonances and quantum ray method”, Proceedings of the International Seminar Days on Diffraction, 2004 (Saint Petersburg, Russia, 2004), 114–126 | DOI

[6] A. V. Pereskokov, “Asimptotika spektra i kvantovykh srednikh vozmuschennogo rezonansnogo ostsillyatora vblizi granits spektralnykh klasterov”, Izv. RAN. Ser. matem., 77:1 (2013), 165–210 | DOI | MR | Zbl

[7] A. V. Pereskokov, “New type of semiclassical asymptotics of eigenstates near the boundaries of spectral clusters for Schrödinger-type operators”, 2016 Days on Diffraction (St. Petersburg, 2016), 323–326 | DOI

[8] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972 | MR | Zbl

[9] S. Yu. Dobrokhotov, V. P. Maslov, “Nekotorye prilozheniya teorii kompleksnogo rostka k uravneniyam s malym parametrom”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 5, VINITI, M., 1975, 141–211 | MR | Zbl

[10] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii. Edinaya teoriya, osnovannaya na analize osobennostei, Nevskii Dialekt, SPb., 2002

[11] M. Karasev, E. Novikova, “Non-Lie permutation relations, coherent states, and quantum embedding”, Coherent Transform, Quantization, and Poisson Geometry, Amer. Math. Soc. Trans. Ser. 2, 187, Amer. Math. Soc., Providence, RI, 1998, 1–202 | MR

[12] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1974 | MR | Zbl

[13] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[14] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl