On the Multidimensional Tarry Problem for a Cubic Polynomial
Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 657-673

Voir la notice de l'article provenant de la source Math-Net.Ru

A new upper bound for the exponent of convergence of a special integral in the Tarry problem is obtained. The result is based on the representation of a special integral as a surface integral extended to the manifold of solutions of the system of equations of the Tarry problem. New estimates of the arising surface integrals reducing the estimation to the study of operators with discrete spectrum are obtained by using maximal minors.
Keywords: surface integrals, trigonometric integrals, Gram determinant, algebraic varieties, implicit functions.
@article{MZM_2020_107_5_a1,
     author = {I. Sh. Dzhabbarov},
     title = {On the {Multidimensional} {Tarry} {Problem} for a {Cubic} {Polynomial}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {657--673},
     publisher = {mathdoc},
     volume = {107},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a1/}
}
TY  - JOUR
AU  - I. Sh. Dzhabbarov
TI  - On the Multidimensional Tarry Problem for a Cubic Polynomial
JO  - Matematičeskie zametki
PY  - 2020
SP  - 657
EP  - 673
VL  - 107
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a1/
LA  - ru
ID  - MZM_2020_107_5_a1
ER  - 
%0 Journal Article
%A I. Sh. Dzhabbarov
%T On the Multidimensional Tarry Problem for a Cubic Polynomial
%J Matematičeskie zametki
%D 2020
%P 657-673
%V 107
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a1/
%G ru
%F MZM_2020_107_5_a1
I. Sh. Dzhabbarov. On the Multidimensional Tarry Problem for a Cubic Polynomial. Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 657-673. http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a1/