Convergence of a Limit Periodic Schur Continued Fraction
Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 643-656
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we show that if the parameters of a Schur continued fraction
tend to zero, then the functions to which
the even convergents converge inside the unit disk
and the functions to which the odd convergents converge outside the unit disk
cannot have a meromorphic continuation to each other
through any arc of the unit circle.
This result is obtained as a consequence of the convergence theorem
for limit periodic Schur continued fractions.
Keywords:
continued fractions, Hankel determinants,
transfinite diameter, meromorphic continuation.
@article{MZM_2020_107_5_a0,
author = {V. I. Buslaev},
title = {Convergence of a {Limit} {Periodic} {Schur} {Continued} {Fraction}},
journal = {Matemati\v{c}eskie zametki},
pages = {643--656},
publisher = {mathdoc},
volume = {107},
number = {5},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a0/}
}
V. I. Buslaev. Convergence of a Limit Periodic Schur Continued Fraction. Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 643-656. http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a0/