Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_5_a0, author = {V. I. Buslaev}, title = {Convergence of a {Limit} {Periodic} {Schur} {Continued} {Fraction}}, journal = {Matemati\v{c}eskie zametki}, pages = {643--656}, publisher = {mathdoc}, volume = {107}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a0/} }
V. I. Buslaev. Convergence of a Limit Periodic Schur Continued Fraction. Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 643-656. http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a0/
[1] I. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 147 (1917), 205–232 | MR
[2] H.-J. Runkel, “Bounded analytic functions in the unit disk and the behaviour of certain analytic continued fractions near the singular line”, J. Reine Angew. Math., 281 (1976), 97–125 | MR
[3] W. B. Jones, O. Njåstad, W. J. Thron, “Schur fractions, Perron–Carathéodory fractions and Szegő polynomials, a survey”, Analytic Theory of Continued Fractions II, Lecture Notes in Math., 1199, Springer-Verlag, Berlin, 1986, 127–158 | DOI | MR
[4] V. I. Buslaev, “O kriterii Shura dlya formalnykh stepennykh ryadov”, Matem. sb., 210:11 (2019), 58–75 | DOI | MR
[5] E. B. Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997 | MR
[6] V. I. Buslaev, “O teoreme Van Fleka dlya pravilnykh $C$-drobei s predelno periodicheskimi koeffitsientami”, Izv. RAN. Ser. matem., 65:4 (2001), 35–48 | DOI | MR | Zbl
[7] V. I. Buslaev, “O skhodimosti nepreryvnykh T-drobei”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Tr. MIAN, 235, Nauka, MAIK «Nauka/Interperiodika», M., 2001, 36–51 | MR | Zbl
[8] V. I. Buslaev, “Emkost ratsionalnogo proobraza kompakta”, Matem. zametki, 100:6 (2016), 790–799 | DOI | MR
[9] V. I. Buslaev, “Analog teoremy Polia dlya kusochno golomorfnykh funktsii”, Matem. sb., 206:12 (2015), 55–69 | DOI | MR
[10] G. Polya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsberichte Akad. Berlin, 1929, 55–62 | Zbl
[11] V. I. Buslaev, “O gankelevykh opredelitelyakh funktsii, zadannykh svoim razlozheniem v $P$-drob”, Ukr. matem. zhurn., 62:3 (2010), 315–326 | MR
[12] V. I. Buslaev, “Ob osobykh tochkakh meromorfnykh funktsii, zadavaemykh nepreryvnymi drobyami”, Matem. zametki, 103:4 (2018), 490–502 | DOI | MR
[13] V. I. Buslaev, “O nepreryvnykh drobyakh s predelno periodicheskimi koeffitsientami”, Matem. sb., 209:2 (2018), 47–65 | DOI | MR