Convergence of a Limit Periodic Schur Continued Fraction
Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 643-656.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we show that if the parameters of a Schur continued fraction tend to zero, then the functions to which the even convergents converge inside the unit disk and the functions to which the odd convergents converge outside the unit disk cannot have a meromorphic continuation to each other through any arc of the unit circle. This result is obtained as a consequence of the convergence theorem for limit periodic Schur continued fractions.
Keywords: continued fractions, Hankel determinants, transfinite diameter, meromorphic continuation.
@article{MZM_2020_107_5_a0,
     author = {V. I. Buslaev},
     title = {Convergence of a {Limit} {Periodic} {Schur} {Continued} {Fraction}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--656},
     publisher = {mathdoc},
     volume = {107},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a0/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Convergence of a Limit Periodic Schur Continued Fraction
JO  - Matematičeskie zametki
PY  - 2020
SP  - 643
EP  - 656
VL  - 107
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a0/
LA  - ru
ID  - MZM_2020_107_5_a0
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Convergence of a Limit Periodic Schur Continued Fraction
%J Matematičeskie zametki
%D 2020
%P 643-656
%V 107
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a0/
%G ru
%F MZM_2020_107_5_a0
V. I. Buslaev. Convergence of a Limit Periodic Schur Continued Fraction. Matematičeskie zametki, Tome 107 (2020) no. 5, pp. 643-656. http://geodesic.mathdoc.fr/item/MZM_2020_107_5_a0/

[1] I. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 147 (1917), 205–232 | MR

[2] H.-J. Runkel, “Bounded analytic functions in the unit disk and the behaviour of certain analytic continued fractions near the singular line”, J. Reine Angew. Math., 281 (1976), 97–125 | MR

[3] W. B. Jones, O. Njåstad, W. J. Thron, “Schur fractions, Perron–Carathéodory fractions and Szegő polynomials, a survey”, Analytic Theory of Continued Fractions II, Lecture Notes in Math., 1199, Springer-Verlag, Berlin, 1986, 127–158 | DOI | MR

[4] V. I. Buslaev, “O kriterii Shura dlya formalnykh stepennykh ryadov”, Matem. sb., 210:11 (2019), 58–75 | DOI | MR

[5] E. B. Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997 | MR

[6] V. I. Buslaev, “O teoreme Van Fleka dlya pravilnykh $C$-drobei s predelno periodicheskimi koeffitsientami”, Izv. RAN. Ser. matem., 65:4 (2001), 35–48 | DOI | MR | Zbl

[7] V. I. Buslaev, “O skhodimosti nepreryvnykh T-drobei”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Tr. MIAN, 235, Nauka, MAIK «Nauka/Interperiodika», M., 2001, 36–51 | MR | Zbl

[8] V. I. Buslaev, “Emkost ratsionalnogo proobraza kompakta”, Matem. zametki, 100:6 (2016), 790–799 | DOI | MR

[9] V. I. Buslaev, “Analog teoremy Polia dlya kusochno golomorfnykh funktsii”, Matem. sb., 206:12 (2015), 55–69 | DOI | MR

[10] G. Polya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsberichte Akad. Berlin, 1929, 55–62 | Zbl

[11] V. I. Buslaev, “O gankelevykh opredelitelyakh funktsii, zadannykh svoim razlozheniem v $P$-drob”, Ukr. matem. zhurn., 62:3 (2010), 315–326 | MR

[12] V. I. Buslaev, “Ob osobykh tochkakh meromorfnykh funktsii, zadavaemykh nepreryvnymi drobyami”, Matem. zametki, 103:4 (2018), 490–502 | DOI | MR

[13] V. I. Buslaev, “O nepreryvnykh drobyakh s predelno periodicheskimi koeffitsientami”, Matem. sb., 209:2 (2018), 47–65 | DOI | MR