Justification of the Collocation Method for a Class of Surface Integral Equations
Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 604-622.

Voir la notice de l'article provenant de la source Math-Net.Ru

The application of the collocation method to the boundary integral equation of the exterior Dirichlet boundary-value problem for the Helmholtz equation is justified. In addition, a new method for constructing cubature formulas for surface singular integrals is proposed.
Keywords: Helmholtz equation, exterior Dirichlet boundary-value problem, surface singular integral, collocation method.
Mots-clés : cubature formula
@article{MZM_2020_107_4_a9,
     author = {E. G. Khalilov},
     title = {Justification of the {Collocation} {Method} for a {Class} of {Surface} {Integral} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {604--622},
     publisher = {mathdoc},
     volume = {107},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a9/}
}
TY  - JOUR
AU  - E. G. Khalilov
TI  - Justification of the Collocation Method for a Class of Surface Integral Equations
JO  - Matematičeskie zametki
PY  - 2020
SP  - 604
EP  - 622
VL  - 107
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a9/
LA  - ru
ID  - MZM_2020_107_4_a9
ER  - 
%0 Journal Article
%A E. G. Khalilov
%T Justification of the Collocation Method for a Class of Surface Integral Equations
%J Matematičeskie zametki
%D 2020
%P 604-622
%V 107
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a9/
%G ru
%F MZM_2020_107_4_a9
E. G. Khalilov. Justification of the Collocation Method for a Class of Surface Integral Equations. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 604-622. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a9/

[1] D. Kolton, R. Kress, Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[2] N. M. Gyunter, Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, Gostekhizdat, M., 1953 | MR

[3] F. A. Abdullaev, E. G. Khalilov, “Obosnovanie metoda kollokatsii dlya odnogo klassa granichnykh integralnykh uravnenii”, Differents. uravneniya, 40:1 (2004), 82–86 | MR

[4] A. A. Kashirin, S. I. Smagin, “O chislennom reshenii zadach Dirikhle dlya uravneniya Gelmgoltsa metodom potentsialov”, Zh. vychisl. matem. i matem. fiz., 52:8 (2012), 1492–1505 | MR

[5] E. G. Khalilov, “Obosnovanie metoda kollokatsii dlya integralnogo uravneniya smeshannoi kraevoi zadachi dlya uravneniya Gelmgoltsa”, Zh. vychisl. matem. i matem. fiz., 56:7 (2016), 1340–1348 | DOI

[6] E. G. Khalilov, “Konstruktivnyi metod resheniya kraevoi zadachi dlya uravneniya Gelmgoltsa s impedansnym usloviem”, Differents. uravneniya, 54:4 (2018), 544–555 | DOI

[7] E. H. Khalilov, A. R. Aliev, “Justification of a quadrature method for an integral equation to the external Neumann problem for the Helmholtz equation”, Math. Methods Appl. Sci., 41:16 (2018), 6921–6933 | DOI | MR

[8] P. J. Harris, K. Chen, “On efficient preconditioners for iterative solution of a Galerkin boundary element equation for the three-dimensional exterior Helmholtz problem”, J. Comput. Appl. Math., 156:2 (2003), 303–318 | DOI | MR

[9] N. Mustafa, E. H. Khalilov, “The collocation method for the solution of boundary integral equations”, Appl. Anal., 88:12 (2009), 1665–1675 | DOI | MR

[10] R. Kress, “Boundary integral equations in time-harmonic acoustic scattering”, Math. Comput. Modelling, 15:3-5 (1991), 229–243 | DOI | MR

[11] E. H. Khalilov, “Cubic formula for a class of weakly singular surface integrals”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 39 (2013), 69–76 | MR

[12] E. G. Khalilov, “Nekotorye svoistva operatora, porozhdennogo proizvodnoi akusticheskogo potentsiala dvoinogo sloya”, Sib. matem. zhurn., 55:3 (2014), 690–700 | MR

[13] A. Yu. Anfinogenov, I. K. Lifanov, P. I. Lifanov, “O nekotorykh gipersingulyarnykh odnomernykh i dvumernykh integralnykh uravneniyakh”, Matem. sb., 192:8 (2001), 3–46 | DOI | MR | Zbl

[14] A. I. Guseinov, Kh. Sh. Mukhtarov, Vvedenie v teoriyu nelineinykh singulyarnykh integralnykh uravnenii, Nauka, M., 1980 | MR | Zbl

[15] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl

[16] G. M. Vainikko, “Regulyarnaya skhodimost operatorov i priblizhennoe reshenie uravnenii”, Itogi nauki i tekhn. Ser. Mat. anal., 16, VINITI, M., 1979, 5–53 | MR | Zbl