Short Tests of Closures for Contact Circuits
Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 591-603
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of representing Boolean functions by two-pole contact circuits that are irredundant and admit short fault detection or diagnostic tests of closures of at most $k$ contacts for a given positive integer $k$ is considered. The following assertions are proved: for almost every Boolean function of $n$ variables, the minimal length of a fault detection (diagnostic) test is equal to $2$ (does not exceed $2k+2$, respectively).
Mots-clés :
contact circuit, diagnostic test.
Keywords: contact closure, fault detection test
Keywords: contact closure, fault detection test
@article{MZM_2020_107_4_a8,
author = {K. A. Popkov},
title = {Short {Tests} of {Closures} for {Contact} {Circuits}},
journal = {Matemati\v{c}eskie zametki},
pages = {591--603},
publisher = {mathdoc},
volume = {107},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a8/}
}
K. A. Popkov. Short Tests of Closures for Contact Circuits. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 591-603. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a8/