Short Tests of Closures for Contact Circuits
Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 591-603.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of representing Boolean functions by two-pole contact circuits that are irredundant and admit short fault detection or diagnostic tests of closures of at most $k$ contacts for a given positive integer $k$ is considered. The following assertions are proved: for almost every Boolean function of $n$ variables, the minimal length of a fault detection (diagnostic) test is equal to $2$ (does not exceed $2k+2$, respectively).
Mots-clés : contact circuit, diagnostic test.
Keywords: contact closure, fault detection test
@article{MZM_2020_107_4_a8,
     author = {K. A. Popkov},
     title = {Short {Tests} of {Closures} for {Contact} {Circuits}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {591--603},
     publisher = {mathdoc},
     volume = {107},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a8/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - Short Tests of Closures for Contact Circuits
JO  - Matematičeskie zametki
PY  - 2020
SP  - 591
EP  - 603
VL  - 107
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a8/
LA  - ru
ID  - MZM_2020_107_4_a8
ER  - 
%0 Journal Article
%A K. A. Popkov
%T Short Tests of Closures for Contact Circuits
%J Matematičeskie zametki
%D 2020
%P 591-603
%V 107
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a8/
%G ru
%F MZM_2020_107_4_a8
K. A. Popkov. Short Tests of Closures for Contact Circuits. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 591-603. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a8/

[1] O. B. Lupanov, Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo Mosk. un-ta, M., 1984

[2] I. A. Chegis, S. V. Yablonskii, “Logicheskie sposoby kontrolya raboty elektricheskikh skhem”, Sbornik statei po matematicheskoi logike i ee prilozheniyam k nekotorym voprosam kibernetiki, Tr. MIAN SSSR, 51, Izd-vo AN SSSR, M., 1958, 270–360 | MR | Zbl

[3] S. V. Yablonskii, “Nadezhnost i kontrol upravlyayuschikh sistem”, Materialy Vsesoyuznogo seminara po diskretnoi matematike i ee prilozheniyam (31 yanvarya–2 fevralya 1984 g., Moskva), Izd-vo Mosk. un-ta, M., 1986, 7–12

[4] S. V. Yablonskii, “Nekotorye voprosy nadezhnosti i kontrolya upravlyayuschikh sistem”, Matematicheskie voprosy kibernetiki, Vyp. 1, Nauka, M., 1988, 5–25

[5] N. P. Redkin, Nadezhnost i diagnostika skhem, Izd-vo Mosk. un-ta, M., 1992

[6] S. S. Kolyada, Verkhnie otsenki dliny proveryayuschikh testov dlya skhem iz funktsionalnykh elementov, Dis. $\dots$ kand. fiz.-matem. nauk, Mosk. un-ta, M., 2013

[7] Kh. A. Madatyan, “Polnyi test dlya bespovtornykh kontaktnykh skhem”, Problemy kibernetiki, Vyp. 23, Nauka, M., 1970, 103–118

[8] N. P. Redkin, “O polnykh proveryayuschikh testakh dlya kontaktnykh skhem”, Metody diskretnogo analiza v issledovanii ekstremalnykh struktur, Vyp. 39, In-t matem. SO AN SSSR, Novosibirsk, 1983, 80–87

[9] N. P. Redkin, “O proveryayuschikh testakh zamykaniya i razmykaniya”, Metody diskretnogo analiza v optimizatsii upravlyayuschikh sistem, Vyp. 40, In-t matem. SO AN SSSR, Novosibirsk, 1983, 87–99

[10] D. S. Romanov, “O sinteze kontaktnykh skhem, dopuskayuschikh korotkie proveryayuschie testy”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 156, no. 3, Izd-vo Kazanskogo un-ta, Kazan, 2014, 110–115

[11] K. A. Popkov, “O testakh zamykaniya dlya kontaktnykh skhem”, Diskret. matem., 28:1 (2016), 87–100 | DOI | MR

[12] K. A. Popkov, “O proveryayuschikh testakh razmykaniya dlya kontaktnykh skhem”, Diskret. matem., 29:4 (2017), 66–86 | DOI

[13] K. A. Popkov, “O diagnosticheskikh testakh razmykaniya dlya kontaktnykh skhem”, Preprinty IPM im. M. V. Keldysha, 2018, 271, 24 pp. | DOI

[14] N. P. Redkin, “O diagnosticheskikh testakh dlya kontaktnykh skhem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2019, no. 2, 35–37 | MR | Zbl

[15] S. V. Yablonskii, Vvedenie v diskretnuyu matematiku, Nauka, M., 1986 | MR