Short Tests of Closures for Contact Circuits
Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 591-603

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of representing Boolean functions by two-pole contact circuits that are irredundant and admit short fault detection or diagnostic tests of closures of at most $k$ contacts for a given positive integer $k$ is considered. The following assertions are proved: for almost every Boolean function of $n$ variables, the minimal length of a fault detection (diagnostic) test is equal to $2$ (does not exceed $2k+2$, respectively).
Mots-clés : contact circuit, diagnostic test.
Keywords: contact closure, fault detection test
@article{MZM_2020_107_4_a8,
     author = {K. A. Popkov},
     title = {Short {Tests} of {Closures} for {Contact} {Circuits}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {591--603},
     publisher = {mathdoc},
     volume = {107},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a8/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - Short Tests of Closures for Contact Circuits
JO  - Matematičeskie zametki
PY  - 2020
SP  - 591
EP  - 603
VL  - 107
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a8/
LA  - ru
ID  - MZM_2020_107_4_a8
ER  - 
%0 Journal Article
%A K. A. Popkov
%T Short Tests of Closures for Contact Circuits
%J Matematičeskie zametki
%D 2020
%P 591-603
%V 107
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a8/
%G ru
%F MZM_2020_107_4_a8
K. A. Popkov. Short Tests of Closures for Contact Circuits. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 591-603. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a8/