Characterization of JBW-Algebras with Strongly Facially Symmetric Predual Space
Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 539-549.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to the study of predual spaces of JBW-algebras. It is proved that the predual space of a JBW-algebra is a strongly facially symmetric space if and only if this algebra is the direct sum of an Abelian algebra and an algebra of type $I_2$.
Keywords: WFS-space, SFS-space, JBW-algebra.
@article{MZM_2020_107_4_a4,
     author = {K. K. Kudaybergenov and J. Kh. Seypullaev},
     title = {Characterization of {JBW-Algebras} with {Strongly} {Facially} {Symmetric} {Predual} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {539--549},
     publisher = {mathdoc},
     volume = {107},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a4/}
}
TY  - JOUR
AU  - K. K. Kudaybergenov
AU  - J. Kh. Seypullaev
TI  - Characterization of JBW-Algebras with Strongly Facially Symmetric Predual Space
JO  - Matematičeskie zametki
PY  - 2020
SP  - 539
EP  - 549
VL  - 107
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a4/
LA  - ru
ID  - MZM_2020_107_4_a4
ER  - 
%0 Journal Article
%A K. K. Kudaybergenov
%A J. Kh. Seypullaev
%T Characterization of JBW-Algebras with Strongly Facially Symmetric Predual Space
%J Matematičeskie zametki
%D 2020
%P 539-549
%V 107
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a4/
%G ru
%F MZM_2020_107_4_a4
K. K. Kudaybergenov; J. Kh. Seypullaev. Characterization of JBW-Algebras with Strongly Facially Symmetric Predual Space. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 539-549. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a4/

[1] E. M. Alfsen, F. W. Shultz, “State spaces of Jordan algebras”, Acta. Math., 140:3-4 (1978), 155–190 | DOI | MR

[2] E. M. Alfsen, H. Hanche-Olsen, F. W. Shultz, “State spaces of $C^*$-algebras”, Acta. Math., 144:3-4 (1980), 267–305 | DOI | MR

[3] W. Kaup, “Riemann mapping theorem for bounded symmetric domains in complex Banach spaces”, Math. Z., 138:4 (1983), 503–529 | DOI | MR

[4] W. Kaup, “Contractive projections on Jordan C*-algebras and generalizations”, Math. Scand., 54:1 (1984), 95–100 | DOI | MR

[5] Y. Friedman, B. Russo, “Affine structure of facially symmetric spaces”, Math. Proc. Cambridge Philos. Soc., 106:1 (1989), 107–124 | DOI | MR

[6] Y. Friedman, B. Russo, “Some affine geometric aspects of operator algebras”, Pacific. J. Math., 137:1 (1989), 123–144 | DOI | MR

[7] Y. Friedman, B. Russo, “Geometry of the dual ball of the spin factor”, Proc. London Math. Soc. (3), 65:1 (1992), 142–174 | DOI | MR

[8] Y. Friedman, B. Russo, “Classification of atomic facially symmetric spaces”, Canad. J. Math., 45:1 (1993), 33–87 | DOI | MR

[9] M. Neal, B. Russo, “State space of $JB^*$-triples”, Math. Ann., 328:4 (2004), 585–624 | DOI | MR

[10] M. M. Ibragimov, K. K. Kudaibergenov, S. Zh. Tleumuratov, Zh. Kh. Seipullaev, “Geometricheskoe opisanie predsopryazhennogo prostranstva k atomicheskoi kommutativnoi algebre fon Neimana”, Matem. zametki, 93:5 (2013), 728–735 | DOI | MR | Zbl

[11] N. Yadgorov, M. Ibragimov, K. Kudaybergenov, “Geometric characterization of $L_1$-spaces”, Studia Math., 219:2 (2013), 21–27 | MR

[12] M. Ibragimov, K. Kudaibergenov, Zh. Seipullaev, “Granevo simmetrichnye i predsopryazhennye ermitovoi chasti algebr fon Neimana prostranstva”, Izv. vuzov. Matem., 2018, no. 5, 33–40

[13] Y. Friedman, B. Russo, “A geometric spectral theorem”, Quart. J. Math. Oxford Ser. (2), 37:147 (1986), 263–277 | MR

[14] E. M. Alfsen, F. W. Shultz, Geometry of State Spaces of Operator Algebras, Birkhäuser Boston, Boston, MA, 2003 | MR

[15] Sh. A. Ayupov, Klassifikatsiya i predstavlenie uporyadochennykh iordanovykh algebr, Izd-vo Fan, Tashkent, 1986 | MR

[16] C. M. Edwards, G. T. Ruttimann, “The facial and inner ideal structure of a real $JBW^*$-triple”, Math. Nachr., 222 (2001), 159–184 | MR

[17] N. Zh. Yadgorov, “Slabo i silno granevo simmetrichnye prostranstva”, Dokl. AN RUz, 1996, no. 5, 6–8