Abelian RE-Groups
Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 533-538
Cet article a éte moissonné depuis la source Math-Net.Ru
An Abelian group on which every nonzero ring is isomorphic to the ring of endomorphisms of this group is called an RE-group. In the present paper, the RE-groups are described in some classes of Abelian groups, including periodic, divisible, unreduced, and torsion-free rank-1 groups. It is shown that there are no RE-groups in the class of completely decomposable torsion-free Abelian groups.
Keywords:
Abelian group, periodic group, unreduced group, torsion-free rank-1 group, endomorphism group of an Abelian group, endomorphism ring of an Abelian group.
Mots-clés : $E^+$-group, divisible group
Mots-clés : $E^+$-group, divisible group
@article{MZM_2020_107_4_a3,
author = {E. M. Kolenova and T. A. Pushkova},
title = {Abelian {RE-Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {533--538},
year = {2020},
volume = {107},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a3/}
}
E. M. Kolenova; T. A. Pushkova. Abelian RE-Groups. Matematičeskie zametki, Tome 107 (2020) no. 4, pp. 533-538. http://geodesic.mathdoc.fr/item/MZM_2020_107_4_a3/
[1] L. Fuks, Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977 | MR | Zbl
[2] E. M. Kolenova, A. M. Sebeldin, “Ob izomorfnosti abelevoi gruppy svoei gruppe endomorfizmov”, Matem. zametki, 80:4 (2006), 536–545 | DOI | MR | Zbl
[3] A. M. Sebeldin, “Gruppy gomomorfizmov vpolne razlozhimykh abelevykh grupp bez krucheniya”, Izv. vuzov. Matem., 1973, no. 7, 77–84 | MR | Zbl
[4] A. M. Sebeldin, “O gruppakh gomomorfizmov abelevykh grupp bez krucheniya”, Abelevy gruppy i moduli, Izd-vo Tomskogo un-ta, Tomsk, 1976, 78–86